留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超强频率梳激光场驱动下多光子共振谐波辐射的相位突变研究

陈春娟 赵媛媛 赵迪 蒋臣威 方爱平 高韶燕 李福利

陈春娟, 赵媛媛, 赵迪, 等. 超强频率梳激光场驱动下多光子共振谐波辐射的相位突变研究[J]. 强激光与粒子束, 2020, 32: 011016. doi: 10.11884/HPLPB202032.190453
引用本文: 陈春娟, 赵媛媛, 赵迪, 等. 超强频率梳激光场驱动下多光子共振谐波辐射的相位突变研究[J]. 强激光与粒子束, 2020, 32: 011016. doi: 10.11884/HPLPB202032.190453
Chen Chunjuan, Zhao Yuanyuan, Zhao Di, et al. Phase jump in multiphoton resonant harmonic emission driven by strong frequency-comb fields[J]. High Power Laser and Particle Beams, 2020, 32: 011016. doi: 10.11884/HPLPB202032.190453
Citation: Chen Chunjuan, Zhao Yuanyuan, Zhao Di, et al. Phase jump in multiphoton resonant harmonic emission driven by strong frequency-comb fields[J]. High Power Laser and Particle Beams, 2020, 32: 011016. doi: 10.11884/HPLPB202032.190453

超强频率梳激光场驱动下多光子共振谐波辐射的相位突变研究

doi: 10.11884/HPLPB202032.190453
基金项目: 国家自然科学基金项目(11504288,11534008,91536115,11604257);国家高技术发展计划项目
详细信息
    作者简介:

    陈春娟(1994—),女,硕士研究生,研究方向为超强超快激光与原子相互作用动力学过程;974080913@qq.com

    通讯作者:

    赵 迪(1983—),男,博士,副教授,研究方向为超强超快激光与原子相互作用动力学过程、量子光学;d.zhao@mail.xjtu.edu.cn

  • 中图分类号: O437

Phase jump in multiphoton resonant harmonic emission driven by strong frequency-comb fields

  • 摘要: 本文从理论上研究了在双色频率梳激光场驱动下多光子谐波辐射光谱中的相位突变现象。我们利用Floquet理论非微扰地模拟了频率梳激光场与原子分子等量子系统的相互作用过程。谐波辐射信号是多光子偶极跃迁相干叠加的结果,通过调节频率梳激光场间的相对相位,可以相干地控制谐波辐射信号的强度。通过对谐波信号进行傅里叶变换,可以提取不同跃迁路径的相对相位信息。我们通过改变频率梳组激光场的强度和频率组分实现多光子跃迁频率,让其跨越共振跃迁频率时,谐波相位会发生突变。从而可以观测超强激光场驱动下量子系统共振跃迁频率的斯塔克能移。
  • 图  1  HHG能谱随相对相位的变化

    Figure  1.  High order harmonic generation (HHG) spectra as a function of the relative phase

    图  2  不同谐波信号的相位φ随CEP相移变化的关系图

    Figure  2.  Phase of HHG spectra as a function of carrier enuelope phase (CEP) shift

    图  3  不同谐波信号的相位φ随驱动场强度变化的关系图

    Figure  3.  Phase of HHG spectra as a function of intensity of the driving field

  • [1] L’Huillier A, Balcou P. High-order harmonic generation in rare gases with a 1-ps 1053-nm laser[J]. Phys Rev Lett, 1993, 70(6): 774-777. doi: 10.1103/PhysRevLett.70.774
    [2] Ravasio A, Gauthier D, Maia F R N C, et al. Single-shot diffractive imaging with a table-top femtosecond soft X-ray laser-harmonics source[J]. Phys Rev Lett, 2009, 103: 028104. doi: 10.1103/PhysRevLett.103.028104
    [3] Winterfeldt C, Spielmann C, Gerber G. Colloquium: Optimal control of high-harmonic generation[J]. Rev Mod Phys, 2008, 80: 117. doi: 10.1103/RevModPhys.80.117
    [4] Kapteyn H C, Murnane M M, Christov I P. Extreme nonlinear optics: Coherent X rays from lasers[J]. Physics Today, 2005, 58: 39.
    [5] Schultze M, Fieß M, Karpowicz N, et al. Delay in photoemission[J]. Science, 2010, 328: 1658. doi: 10.1126/science.1189401
    [6] Klünder K, Dahlström J M, Gisselbrecht M, et al. Probing single-photon ionization on the attosecond time scale[J]. Phys Rev Lett, 2011, 106: 143002. doi: 10.1103/PhysRevLett.106.143002
    [7] Wang He, Chini M, Chen Shouyuan, et al. Attosecond time-resolved autoionization of argon[J]. Phys Rev Lett, 2010, 105: 143002. doi: 10.1103/PhysRevLett.105.143002
    [8] Chini M, Wang Xiaowei, Cheng Yan, et al. Sub-cycle oscillations in virtual states brought to light[J]. Sci Rep, 2013, 3: 1105. doi: 10.1038/srep01105
    [9] Chini M, Zhao Baozhen, Wang He, et al. Subcycle ac Stark shift of helium excited states probed with isolated attosecond pulses[J]. Phys Rev Lett, 2012, 109: 073601. doi: 10.1103/PhysRevLett.109.073601
    [10] Wu M, Chen S, Gaarde M B, et al. Time-domain perspective on Autler-Townes splitting in attosecond transient absorption of laser-dressed helium atoms[J]. Phys Rev A, 2013, 88: 043416. doi: 10.1103/PhysRevA.88.043416
    [11] Li X, Haxton D J, Gaarde M B, et al. Direct extraction of intense-field-induced polarization in the continuum on the attosecond time scale from transient absorption[J]. Phys. Rev. A, 2016, 93: 023401. doi: 10.1103/PhysRevA.93.023401
    [12] Chew A, Douguet N, Cariker C, et al. Attosecond transient absorption spectrum of argon at the L2,3 edge[J]. Phys Rev A, 2018, 97: 031407(R). doi: 10.1103/PhysRevA.97.031407
    [13] Chen Shaohao, Wu Mengxi, Gaarde M B, et al. Laser-imposed phase in resonant absorption of an isolated attosecond pulse[J]. Phys Rev A, 2013, 88: 033409. doi: 10.1103/PhysRevA.88.033409
    [14] Ott C, Kaldun A, Raith P, et al. Lorentz meets Fano in spectral line shapes: A universal phase and its laser control[J]. Science, 2013, 340: 716.
    [15] Stooß V, Cavaletto S M, Donsa S, et al. Real-time reconstruction of the strong-field-driven dipole response[J]. Phys Rev Lett, 2018, 121: 173005. doi: 10.1103/PhysRevLett.121.173005
    [16] Corkum P B. Plasma perspective on strong-field multiphoton ionization[J]. Phys Rev Lett, 1993, 71: 1994. doi: 10.1103/PhysRevLett.71.1994
    [17] Watson J B, Sanpera A, Chen X, et al. Harmonic generation from a coherent superposition of states[J]. Phys Rev A, 1996, 53: R1962. doi: 10.1103/PhysRevA.53.R1962
    [18] Sanpera A, Watson J B, Lewenstein M, et al. Harmonic-generation control[J]. Phys Rev A, 1996, 54: 4320. doi: 10.1103/PhysRevA.54.4320
    [19] Chen Jing, Zeng Bin, Liu X, et al. Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom[J]. New J. Phys, 2009, 11: 113021. doi: 10.1088/1367-2630/11/11/113021
    [20] Ivanov I A, Kheifets A S. Resonant enhancement of generation of harmonics[J]. Phys Rev A, 2008, 78: 053406. doi: 10.1103/PhysRevA.78.053406
    [21] Ivanov I A, Kheifets A S. High harmonics generation from excited states of atomic lithium[J]. J Phys B: At Mol Opt Phys, 2008, 41: 115603. doi: 10.1088/0953-4075/41/11/115603
    [22] Milošević D B. Theoretical analysis of high-order harmonic generation from a coherent superposition of states[J]. J Opt Soc Am B, 2006, 23: 308. doi: 10.1364/JOSAB.23.000308
    [23] Chen Jigen, Wang Ruquang, Zhai Zhen, et al. Frequency-selected enhancement of high-order-harmonic generation by interference of degenerate Rydberg states in a few-cycle laser pulse[J]. Phys Rev A, 2012, 86: 033417. doi: 10.1103/PhysRevA.86.033417
    [24] Swoboda M, Fordell T, Klünder K, et al. Phase measurement of resonant two-photon ionization in helium[J]. Phys Rev Lett, 2010, 104: 103003. doi: 10.1103/PhysRevLett.104.103003
    [25] Rothhardt J, Hädrich S, Demmler S, et al. Enhancing the macroscopic yield of narrow-band high-order harmonic generation by Fano resonances[J]. Phys Rev Lett, 2014, 112: 233002. doi: 10.1103/PhysRevLett.112.233002
    [26] Chini M, Wang Xiaowei, Cheng Yan, et al. Coherent phase-matched VUV generation by field-controlled bound states[J]. Nat. Photon, 2014, 8: 437. doi: 10.1038/nphoton.2014.83
    [27] Taïeb R, Véniard V, Wassaf J, et al. Roles of resonances and recollisions in strong-field atomic phenomena[J]. Phys Rev A, 2003, 68: 033403. doi: 10.1103/PhysRevA.68.033403
    [28] Ngoko Djiokap J M, Starace A F. Resonant enhancement of the harmonic-generation spectrum of beryllium[J]. Phys Rev A, 2013, 88: 053412. doi: 10.1103/PhysRevA.88.053412
    [29] Strelkov V. Role of autoionizing state in resonant high-order harmonic generation and attosecond pulse production[J]. Phys Rev Lett, 2010, 104: 123901. doi: 10.1103/PhysRevLett.104.123901
    [30] Beaulieu S. Role of excited states in high-order harmonic generation[J]. Phys Rev Lett, 2016, 117: 203001. doi: 10.1103/PhysRevLett.117.203001
    [31] Haessler S, Strelkov V, Elouga Bom L B, et al. Phase distortions of attosecond pulses produced by resonance-enhanced high harmonic generation[J]. New J Phys, 2013, 15: 013051. doi: 10.1088/1367-2630/15/1/013051
    [32] Ferré A, Boguslavskiy A E, Dagan M, et al. Multi-channel electronic and vibrational dynamics in polyatomic resonant high-order harmonic generation[J]. Nat Commun, 2015, 6: 5952. doi: 10.1038/ncomms6952
    [33] Paul P M. Observation of a train of attosecond pulses from high harmonic generation[J]. Science, 2001, 292: 1689. doi: 10.1126/science.1059413
    [34] Chu S I, Telnov D A. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields[J]. Phys Rep, 2004, 390: 1. doi: 10.1016/j.physrep.2003.10.001
    [35] Ho T S, Chu S I, Tietz J V. Semiclassical many-mode floquet theory[J]. Chem Phys Lett, 1983, 96: 464. doi: 10.1016/0009-2614(83)80732-5
    [36] Ho T S, Chu S I. Semiclassical many-mode Floquet theory. II. Nonlinear multiphoton dynamics of a two-level system in a strong bichromatic field[J]. J Phys B, 1984, 17: 2101. doi: 10.1088/0022-3700/17/10/015
    [37] Ho T S, Chu S I. Semiclassical many-mode Floquet theory. IV. Coherent population trapping and SU(3) dynamical evolution of dissipative three-level systems in intense bichromatic fields[J]. Phys Rev A, 1985, 32: 377. doi: 10.1103/PhysRevA.32.377
    [38] Ho T S, Chu S I. Semiclassical many-mode Floquet theory. III. SU(3) dynamical evolution of three-leve1 systems in intense bichromatic fields[J]. Phys Rev A, 1985, 31: 659. doi: 10.1103/PhysRevA.31.659
    [39] Zhao Di, Jiang Chenwei, Li Fuli. Coherent control of multiphoton resonance dynamics in high-order-harmonic generation driven by two frequency-comb fields[J]. Phys Rev A, 2015, 92: 043413. doi: 10.1103/PhysRevA.92.043413
    [40] Son S K, Chu S I. Many-mode Floquet theoretical approach for coherent control of multiphoton dynamics driven by intense frequency-comb laser fields[J]. Phys Rev A, 2008, 77: 063406. doi: 10.1103/PhysRevA.77.063406
  • 加载中
图(3)
计量
  • 文章访问数:  1313
  • HTML全文浏览量:  271
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-25
  • 修回日期:  2019-12-30
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回