留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于NEPTUNE3D开展的脉冲功率装置汇流区三维PIC数值模拟

赵海龙 董烨 周海京 王刚华 王强

赵海龙, 董烨, 周海京, 等. 基于NEPTUNE3D开展的脉冲功率装置汇流区三维PIC数值模拟[J]. 强激光与粒子束, 2020, 32: 075005. doi: 10.11884/HPLPB202032.200066
引用本文: 赵海龙, 董烨, 周海京, 等. 基于NEPTUNE3D开展的脉冲功率装置汇流区三维PIC数值模拟[J]. 强激光与粒子束, 2020, 32: 075005. doi: 10.11884/HPLPB202032.200066
Zhao Hailong, Dong Ye, Zhou Haijing, et al. 3D particle-in-cell simulations of current convolute structure on pulsed power facility using NEPTUNE3D[J]. High Power Laser and Particle Beams, 2020, 32: 075005. doi: 10.11884/HPLPB202032.200066
Citation: Zhao Hailong, Dong Ye, Zhou Haijing, et al. 3D particle-in-cell simulations of current convolute structure on pulsed power facility using NEPTUNE3D[J]. High Power Laser and Particle Beams, 2020, 32: 075005. doi: 10.11884/HPLPB202032.200066

基于NEPTUNE3D开展的脉冲功率装置汇流区三维PIC数值模拟

doi: 10.11884/HPLPB202032.200066
基金项目: 国家自然科学基金项目(11205145,11605189)
详细信息
    作者简介:

    赵海龙(1985—),男,博士研究生,主要从事脉冲功率技术及其应用研究;ifp.zhaohailong@qq.com

  • 中图分类号: O536

3D particle-in-cell simulations of current convolute structure on pulsed power facility using NEPTUNE3D

  • 摘要: 大型脉冲功率装置真空汇流区的电子输运过程对于电流汇聚有重要的影响,在高性能计算集群的帮助下,使用NEPTUNE3D软件开展三维全电磁PIC模拟进行了研究,模拟区域(34 cm×34 cm×18 cm)包括双层柱-孔盘旋(DPHC)结构和部分内、外磁绝缘传输线等关键位置。计算结果清晰地展示了零磁位区分布和电子输运轨迹,电子主要由外磁绝缘传输线阴极表面发射,在洛伦兹力作用下向中心漂移并损失在零磁位区处;对电子能量沉积的统计结果表明,受电子流轰击最严重的位置在DPHC结构下层阳极柱表面,来自大型脉冲功率装置的实验结果证实了上述结论。根据计算结果,最大电流损失率(437 kA,27%)发生在电流传输的早期时刻(~15 ns),而电流峰值时刻损失率则仅有0.48%,此时磁绝缘已完全生效,表明DPHC结构在峰值电流的汇聚与传输上有很高的效率。
  • 图  1  脉冲功率装置汇流区结构示意图

    Figure  1.  Schematic of current converging region on pulsed power facility

    图  2  NEPTUNE3D软件建模区域示意图

    Figure  2.  Schematic of simulated structure in NEPTUNE3D code

    图  3  由PSPICE全电路模拟获得的真空绝缘堆B层电压曲线

    Figure  3.  Driving voltage curves from vacuum insulator stack B based on full-circuit PSPICE simulations

    图  4  DPHC结构中磁场强度分布示意图(二维切面)

    Figure  4.  2D slice view of magnetic field distribution in DPHC structure

    图  5  脉冲功率装置汇流区电子发射与输运过程示意图

    Figure  5.  Demonstration of electron emission and transportation process in DPHC structure

    图  6  NEPTUNE计算得到的阳极柱表面电子能量沉积(45˚角方向)

    Figure  6.  Electron deposition on one of twelve anode posts under 45˚ view calculated by NEPTUNE

    图  7  大型脉冲功率装置DPHC结构下阳极柱损伤情况

    Figure  7.  Demonstration of experimental pictures of lower anode posts

    图  8  NEPTUNE3D计算得到的输出端磁场强度对比(是否包含电子发射)

    Figure  8.  Comparison of output magnetic fields between PIC simulations with or without electron emission

    图  9  NEPTUNE3D计算得到的输出电流与损失电流随时间演化曲线

    Figure  9.  Schematics of output driving current and loss calculated by NEPTUNE3D with electron emission

  • [1] Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 2010, 5: 056303.
    [2] McBride R D, Martin M R, Lemke R W, et al. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion[J]. Physics of Plasmas, 2013, 20: 056309. doi: 10.1063/1.4803079
    [3] Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Physical Review Letters, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
    [4] 王勐, 关永超, 宋盛义, 等. PTS装置分层真空轴向绝缘堆设计[J]. 强激光与粒子束, 2010, 22(4):777-781. (Wang Meng, Guan Yongchao, Song Shengyi, et al. Design of PTS vacuum insulator stack[J]. High Power Laser and Particle Beams, 2010, 22(4): 777-781 doi: 10.3788/HPLPB20102204.0777
    [5] 丰树平, 李洪涛, 谢卫平, 等. Z箍缩初级实验平台模块样机[J]. 强激光与粒子束, 2009, 21(3):463-466. (Feng Shuping, Li Hongtao, Xie Weiping, et al. Development of prototype module of Z-pinch primary test stand[J]. High Power Laser and Particle Beams, 2009, 21(3): 463-466
    [6] Zhao Hailong, Deng Jianjun, Wang Ganghua, et al. Load optimal design for a primary test stand facility based on a zero-dimensional load model[J]. Chinese Physics B, 2011, 20: 105201. doi: 10.1088/1674-1056/20/10/105201
    [7] Spielman R B, Corcoran P, Fockler J, et al. A double post-hole convolute diode for Z-pinch experiments on Saturn[C]//Proceedings of the 7th International Pulsed Power Conference. 1989: 445-448.
    [8] PointonT D, Stygar W A, Spielman R B, et al. Particle-in-cell simulations of electron flow in the post-hole convolute of the Z accelerator[J]. Physics of Plasmas, 2001, 8(10): 4534-4544. doi: 10.1063/1.1401118
    [9] Peterson D L, Bowers R L, Matuska W, et al. Insights and applications of two-dimensional simulations to Z-pinch experiments[J]. Physics of Plasmas, 1999, 6(5): 2178-2184. doi: 10.1063/1.873469
    [10] Jennings C A, Cuneo M E, Waisman E M, et al. Simulations of the implosion and stagnation of compact wire arrays[J]. Physics of Plasmas, 2010, 17: 092703. doi: 10.1063/1.3474947
    [11] Madrid E A, Rose D V, Welch D R, et al. Steady-state modeling of current loss in a post-hole convolute driven by high power magnetically insulated transmission lines[J]. Physical Review Special Topics—Accelerators and Beams, 2013, 16: 120401. doi: 10.1103/PhysRevSTAB.16.120401
    [12] Rose D V, Welch D R, Madrid E A, et al. Three-dimensional electromagnetic model of the pulsed-power Z-pinch accelerator[J]. Physical Review Special Topics—Accelerators and Beams, 2010, 13: 010402. doi: 10.1103/PhysRevSTAB.13.010402
    [13] Rose D V, Welch D R, Hughes T P, et al. Plasma evolution and dynamics in high-power vacuum-transmission-line post-hole convolutes[J]. Physical Review Special Topics—Accelerators and Beams, 2008, 11: 060401. doi: 10.1103/PhysRevSTAB.11.060401
    [14] 董烨, 陈军, 杨温渊, 等. 3维全电磁粒子模拟大规模并行程序NEPTUNE[J]. 强激光与粒子束, 2011, 23(6):1607-1615. (Dong Ye, Chen Jun, Yang Wenyuan, et al. Massively parallel code named NEPTUNE for 3D fully electromagnetic and PIC simulations[J]. High Power Laser and Particle Beams, 2011, 23(6): 1607-1615 doi: 10.3788/HPLPB20112306.1607
    [15] 董烨, 杨温渊, 陈军, 等. 并行3维全电磁位子模拟软件NEPTUNE的外加磁场模块设计[J]. 强激光与粒子束, 2010, 22(3):664-670. (Dong Ye, Yang Wenyuan, Chen Jun, et al. Design of external magnetic field loading modules for 3D fully electromagnetic and PIC simulation parallel code NEPTUNE[J]. High Power Laser and Particle Beams, 2010, 22(3): 664-670 doi: 10.3788/HPLPB20102203.0664
    [16] 陈军, 莫则尧, 董烨, 等. 3维全电磁粒子软件NEPTUNE中的并行计算方法[J]. 强激光与粒子束, 2011, 23(11):2999-3002. (Chen Jun, Mo Zeyao, Dong Ye, et al. Parallelization methods in 3D fully electromagnetic code NEPTUNE[J]. High Power Laser and Particle Beams, 2011, 23(11): 2999-3002 doi: 10.3788/HPLPB20112311.2999
    [17] Rose D V, Welch D R, Miller C L, et al. 107 A load-current B-dot monitor simulations, design, and performance[J]. Physical Review Special Topics—Accelerators and Beams, 2010, 13: 040401. doi: 10.1103/PhysRevSTAB.13.040401
  • 加载中
图(9)
计量
  • 文章访问数:  1120
  • HTML全文浏览量:  221
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-14
  • 修回日期:  2020-05-20
  • 刊出日期:  2020-06-24

目录

    /

    返回文章
    返回