留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大功率宽频带G波段三次谐波放大器设计研究

李亚南 刘世硕 蔡军

李亚南, 刘世硕, 蔡军. 大功率宽频带G波段三次谐波放大器设计研究[J]. 强激光与粒子束, 2021, 33: 033002. doi: 10.11884/HPLPB202133.200251
引用本文: 李亚南, 刘世硕, 蔡军. 大功率宽频带G波段三次谐波放大器设计研究[J]. 强激光与粒子束, 2021, 33: 033002. doi: 10.11884/HPLPB202133.200251
Li Ya’nan, Liu Shishuo, Cai Jun. Design of high-power wide-band G-band third harmonic amplifier[J]. High Power Laser and Particle Beams, 2021, 33: 033002. doi: 10.11884/HPLPB202133.200251
Citation: Li Ya’nan, Liu Shishuo, Cai Jun. Design of high-power wide-band G-band third harmonic amplifier[J]. High Power Laser and Particle Beams, 2021, 33: 033002. doi: 10.11884/HPLPB202133.200251

大功率宽频带G波段三次谐波放大器设计研究

doi: 10.11884/HPLPB202133.200251
基金项目: 国防科技项目
详细信息
    作者简介:

    李亚南(1995—),女,硕士研究生,从事太赫兹器件研究;yananli94@126.com

  • 中图分类号: TN125

Design of high-power wide-band G-band third harmonic amplifier

  • 摘要: 针对G波段真空电子器件对大功率、宽频带信号源的需求,开展了G波段三次谐波放大器研究。该放大器利用E波段行波管非线性互作用中的三次谐波电流,通过级联谐波互作用段实现G波段电磁波放大。高性能、实用化G波段宽频带大功率源的设计方案采用非半圆弯曲波导边界折叠波导,利用微波管模拟器套装(MTSS)软件对G波段三次谐波放大器进行模拟优化,结果显示,器件在15 GHz范围内可实现谐波输出功率>3.6 W,转换增益>33.3 dB,电子效率>0.36%。与其他工作在该频段的小型化太赫兹辐射源相比,谐波放大器在输出功率和带宽方面性能优越,为后续开展G波段三次谐波放大器的实际研制工作提供了设计基础。
  • 图  1  三次谐波放大器慢波结构示意图

    Figure  1.  Layout of slow wave structure for third harmonic amplifier

    图  2  折叠波导慢波结构示意图

    Figure  2.  Folded waveguide slow wave structure

    图  3  基波段冷特性

    Figure  3.  Cold characteristics of fundamental section

    图  4  谐波段冷特性

    Figure  4.  Cold characteristics of harmonic section

    图  5  电压不同时,I3L1Pin的变化曲线

    Figure  5.  I3 and L1 vs Pin with different voltage

    图  6  当频率不同时,I3L1Pin的变化曲线

    Figure  6.  I3 and L2 vs Pin with different frequency

    图  7  不同电压下PoutL2Pin的变化曲线

    Figure  7.  Pout and L2 vs Pin with different voltage

    图  8  不同频率下PoutL2Pin的变化曲线

    Figure  8.  Pout and L2 vs Pin with different frequency

    图  9  输出功率、转换增益和电子效率随频率的变化

    Figure  9.  Simulated output power, conversion gain and electronic efficiency vs frequency

    表  1  基波段慢波结构参数

    Table  1.   Parameters of SWS in fundamental section

    typestructurep/mmh/mmdin/mmdout/mmvp/cKcα/(dB·m−1instruction
    normal FWG A 0.77 0.52 0 0 initial structure
    MCB FWG B 0.77 0.52 0 0.1 decrease increase decrease Oout move outward
    C 0.77 0.32 0 0.1 increase increase decrease shorten h
    D 0.77 0.32 0.1 0.1 increase increase decrease Oin move inward
    E 0.74 0.32 0.1 0.1 decrease decrease increase shorten p, final structure
    下载: 导出CSV

    表  2  谐波段慢波结构参数

    Table  2.   Parameters of SWS in harmonic section

    typestructurea/mmp/mmdin/mmdoutvp/cKcα/(dB·m−1instruction
    normal FWGA0.840.3000initial structure
    MCB FWGB0.840.3000.04decreaseincreasedecreaseOout move outward
    C0.840.300.040.04increaseincreasedecreaseOin move inward
    D0.840.330.040.04increaseincreasedecreaseincrease p
    E0.90.330.040.04decreasedecreasedecreaseincrease a, final structure
    下载: 导出CSV

    表  3  三次谐波放大器几何尺寸

    Table  3.   Geometry of third harmonic amplifier

    period/mmlength/mm
    fundamental section (L1)section 10.7445.88
    sever 12.96
    section 20.7459.20
    sever 21.48
    harmonic section (L2-L1)section 30.3343.56
    下载: 导出CSV
  • [1] 蔡英武, 杨陈, 曾耿华, 等. 太赫兹极高分辨力雷达成像试验研究[J]. 强激光与粒子束, 2012, 24(1):7-9. (Cai Yingwu, Yang Chen, Zeng Genghua, et al. Experimental research on high resolution terahertz imaging[J]. High Power Laser and Particle Beams, 2012, 24(1): 7-9
    [2] 董庆楠. 浅谈太赫兹波的特点及其在国民经济中的应用[J]. 科协论坛, 2009(7):78-79. (Dong Qingnan. Characteristics of terahertz wave and its application in national economy[J]. Science and Technology Association Forum, 2009(7): 78-79
    [3] NagatsumaT. Exploring sub-terahertz waves for future wireless communications[C]//The Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics. 2006: 4.
    [4] 宫玉彬, 周庆, 田瀚文, 等. 基于电子学的太赫兹辐射源[J]. 深圳大学学报理工版, 2019, 36(2):111-127. (Gong Yubin, Zhou Qing, Tian Hanwen, et al. Terahertz radiation sources based on electronics[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(2): 111-127 doi: 10.3724/SP.J.1249.2019.02111
    [5] 蔡金赤. 0.22 THz 折叠波导返波管理论和实验研究[D]. 北京: 清华大学, 2015: 5-9.

    Cai Jinchi. Theoretical and experimental study on backward wave management of 0.22 THz folded waveguide. Beijing: Tsinghua University, 2015: 5-9
    [6] Cai Jun, Feng Jinjun, Wu Xianping. Traveling wave tube harmonic amplifier in terahertz and experimental demonstration[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 648-651.
    [7] 蔡军, 邬显平, 冯进军. 太赫兹行波管级联倍频器[J]. 太赫兹科学与电子信息学报, 2013, 11(5):678-683. (Cai Jun, Wu Xianping, Feng Jinjun. THz TWT cascade multiplier[J]. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(5): 678-683
    [8] Kenneth E, Jack C, Mark A, et al. Gallagher 220 GHz power amplifier testing at Northrop Grumman[C]//IEEE 14th International Vacuum Electronics Conference (IVEC). 2013: 35-38.
    [9] Basten M A, Tucek J C, Gallagher D A, et al. 233 GHz high power amplifier development at Northrop Grumman[C]//IEEE 17th International Vacuum Electronics Conference(IVEC). 2016: 43-44.
    [10] Nguyen K, Lars L K, PasourJ, et al. Design a high-gain wideband high power 220-GHz multiple-beam serpentine TWT[C]//IEEE 11th International Vacuum Electronics Conference(IVEC). 2010: 23-24.
    [11] Joye C D, Cook A M, Calam J P, et al. Demonstration of a high power wide-band 220-GHz traveling wave amplifier fabricated by UV-LIGA[J]. IEEE Trans Electron Devices, 2014, 61(6): 1672-1678. doi: 10.1109/TED.2014.2300014
    [12] Gong Huarong, Wang Qi, Deng Difu, et al. Third-harmonic traveling-wave tube multiplier-amplifier[J]. IEEE Trans Electron Devices, 2018, 65(6): 2189-2194. doi: 10.1109/TED.2017.2785661
    [13] 刘盛纲, 李宏福, 王文祥, 等. 微波电子学导论[M]. 北京: 国防工业出版社, 1985: 96-117.

    Liu Shenggang, Li Hongfu, Wang Wenxiang, et al. Introduction to microwave electronics. Beijing: National Defense Industry Press, 1985: 96-117
    [14] Li Hanyan, Li Yongtao, Feng Jinjun. Fabrication of 340-GHz folded waveguides using KMPR photo resist[J]. IEEE Electron Device Letters, 2013, 34(3): 462-464.
    [15] Yuan L, Kirby P L, Papapolymerou J. Silicon micromachined W-band folded and straight waveguides using DRIE technique[C]//IEEE MTT-S Int Microw Symp Dig. 2006: 1915-1918.
    [16] Gamzina D. Nano-CNC machining of sub-THz vacuum electron devices[J]. IEEE Trans Electron Devices, 2016, 63(10): 4067-4073. doi: 10.1109/TED.2016.2594027
    [17] Cai Jun, Feng Jinjun, Wu Xianping. Folded waveguide slow wave structure with modified circular bends[J]. IEEE Trans Electron Devices, 2014, 61(10): 3534-3538. doi: 10.1109/TED.2014.2349651
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  40
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 修回日期:  2020-11-13
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回