留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有源超表面的导电板雷达截面增强捷变设计

王思豪 廖成 尚玉平 张润午

王思豪, 廖成, 尚玉平, 等. 基于有源超表面的导电板雷达截面增强捷变设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202133.200331
引用本文: 王思豪, 廖成, 尚玉平, 等. 基于有源超表面的导电板雷达截面增强捷变设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202133.200331
Wang Sihao, Liao Cheng, Shang Yuping, et al. Agile design of cross-section enhancement of a conducting plate radar through active metasurface[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202133.200331
Citation: Wang Sihao, Liao Cheng, Shang Yuping, et al. Agile design of cross-section enhancement of a conducting plate radar through active metasurface[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202133.200331

基于有源超表面的导电板雷达截面增强捷变设计

doi: 10.11884/HPLPB202133.200331
基金项目: 国家自然科学基金项目(61601379,61771407);中央高校基本科研业务费资助项目(2682018CX41)
详细信息
    作者简介:

    王思豪(1994—),男,硕士研究生,从事雷达散射截面调控研究;18382412052@163.com

    通讯作者:

    廖 成(1964—),男,博士,教授,主要研究方向为计算电磁学、电磁散射与逆散射、天线理论与设计等;c.liao@swjtu.edu.cn

  • 中图分类号: O441.4

Agile design of cross-section enhancement of a conducting plate radar through active metasurface

  • 摘要: 提出了一种使用散射方向图的动态可重构以实现雷达散射截面增强的捷变设计方法。结合变容二极管加载,使用具有嵌入式偏置回路的物理单元,所提出的有源超表面可以在具有梯度电压的外加直流偏置下,对平面电磁波的正入射或斜入射产生可电调的反射系数相位分布,以达到对反射波角度的灵活重定向,进而有助于单站或双站雷达散射截面增强的捷变效果。以导电平板为例,对三种不同的入射反射场景进行了计算与全波仿真,在设计频率10 GHz处,所提出的设计产生了可重构的散射方向图,表明了该设计对反射波角度的实时控制,并结合实验测量验证了单站与双站雷达散射截面的有效增强结果。
  • 图  1  平面电磁波照射下有源超表面的剖面示意图

    Figure  1.  Diagram of metasurface illuminated by a plane electromagnetic wave

    图  2  超表面各单元的反射系数相位分布计算结果

    Figure  2.  Calculated reflection phase distributions for three scenarios

    图  3  单元结构的顶视图与三维视图

    Figure  3.  Top and perspective views of the unit cell geometry

    图  4  在TM极化正入射时反射系数相位在10 GHz随电容C的变化曲线

    Figure  4.  Simulated reflection phase varying with the capacitance C for TM-polarization normal incidence at 10 GHz

    图  5  针对三种情形而得的变容二极管容值分布

    Figure  5.  Simulated varactor capacitance distributions for the three scenarios

    图  6  有源超表面结构及其偏置网络示意

    Figure  6.  Diagram of the active metasurface structure and its biasing network

    图  7  有源超表面和导电平板在三种情形时的雷达散射截面结果

    Figure  7.  Scattering cross-section by the active metasurface and conducting plate for the three scenarios

    图  8  有源超表面和导电平板在10 GHz处xOz面的散射方向图

    Figure  8.  Scattering pattern in xOz plane of the active metasurface and conducting plate at 10 GHz

    图  9  有源超表面的样件照片

    Figure  9.  Photo of the fabricated active metasurface

    图  10  雷达散射截面测量实验场景示意图

    Figure  10.  Radar cross-section measurement setup within the microwave anechoic chamber

  • [1] Shang Yuping, Shen Zhongxiang. Polarization-independent backscattering enhancement of cylinders based on conformal gradient metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2386-2396. doi: 10.1109/TAP.2017.2677949
    [2] Shang Yuping, Xiao Shaoqiu, Shen Zhongxiang. Edge-on backscattering enhancement based on quasi-superdirective reradiation[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 539-542.
    [3] He Yun, Feng Weisen, Guo Sai, et al. Design of a dual-band electromagnetic absorber with frequency selective surfaces[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5): 841-845. doi: 10.1109/LAWP.2020.2981729
    [4] Edries M, Mohamed H A, Hekal S S, et al. A new compact quad-band metamaterial absorber using interlaced I/Square resonators: design, fabrication, and characterization[J]. IEEE Access, 2020, 8: 143723-143733. doi: 10.1109/ACCESS.2020.3009904
    [5] Chen Jianlin, Shang Yuping, Liao Cheng. Double-layer circuit analog absorbers based on resistor-loaded square-loop arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(4): 591-595. doi: 10.1109/LAWP.2018.2805333
    [6] Shang Yuping, Shen Zhongxiang, Xiao Shaoqiu. On the design of single-layer circuit analog absorber using double-square-loop array[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6022-6029. doi: 10.1109/TAP.2013.2280836
    [7] 强宇, 周东方, 刘起坤, 等. 一种新型宽带吸收频率选择表面[J]. 强激光与粒子束, 2019, 31:103222. (Qiang Yu, Zhou Dongfang, Liu Qikun, et al. Novel absorptive frequency selective surface with wideband absorbing properties[J]. High Power Laser and Particle Beams, 2019, 31: 103222
    [8] Bashiri M, Ghobadi C, Nourinia J, et al. WiMAX, WLAN, and X-band filtering mechanism: simple-structured triple-band frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 3245-3248. doi: 10.1109/LAWP.2017.2771265
    [9] Esparza N, Alcón P, Herrán L F, et al. Substrate integrated waveguides structures using frequency selective surfaces operating in stop-band (SBFSS-SIW)[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(2): 113-115. doi: 10.1109/LMWC.2016.2517066
    [10] Cao Yue, Che Wenquan, Yang Wanchen, et al. Novel wideband polarization rotating metasurface element and its application for wideband folded reflectarray[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2118-2127. doi: 10.1109/TAP.2019.2948525
    [11] Zhu H L, Chung K L, Ding Can, et al. Polarization-rotated waveguide antennas for base-station applications[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1545-1548. doi: 10.1109/LAWP.2017.2648858
    [12] Yang Wanchen, Tam K W, Choi W W, et al. Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6206-6216. doi: 10.1109/TAP.2014.2361130
    [13] Liang Jiajun, Huang Guanlong, Zhao Jianing, et al. Wideband phase-gradient metasurface antenna with focused beams[J]. IEEE Access, 2019, 7: 20767-20772. doi: 10.1109/ACCESS.2019.2898550
    [14] Liu Kaiting, Ge Yuehe, Lin Chengxiu. A compact wideband high-gain metasurface-lens-corrected conical horn antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 457-461. doi: 10.1109/LAWP.2019.2894037
    [15] 马宇, 章海锋, 刘婷, 等. 一种波束扫描超材料天线的设计[J]. 强激光与粒子束, 2018, 30:103206. (Ma Yu, Zhang Haifeng, Liu Ting, et al. Design of beam scanning metamaterial antenna[J]. High Power Laser and Particle Beams, 2018, 30: 103206
    [16] Wu Guozhang, Yu Wenqi, Lin Tao, et al. Ultra-wideband RCS reduction based on non-planar coding diffusive metasurface[J]. Materials, 2020, 13(21): 4773. doi: 10.3390/ma13214773
    [17] Liu Shuo, Xu Hexiu, Zhang Haochi, et al. Tunable ultrathin mantle cloak via varactor-diode-loaded metasurface[J]. Optics Express, 2014, 22(11): 13403-13417. doi: 10.1364/OE.22.013403
    [18] Zhao Jie, Cheng Qiang, Chen Jie, et al. A tunable metamaterial absorber using varactor diodes[J]. New Journal of Physics, 2013, 15: 043049. doi: 10.1088/1367-2630/15/4/043049
    [19] Luo Zhangjie, Long Jiang, Chen Xing, et al. Electrically tunable metasurface absorber based on dissipating behavior of embedded varactors[J]. Applied Physics Letters, 2016, 109: 071107. doi: 10.1063/1.4961367
    [20] Zhu Bo O, Chen Ke, Jia Nan, et al. Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface[J]. Scientific Reports, 2014, 4: 4971.
    [21] Feng Yijun, Zhu Bo, Chen Ke, et al. Dynamically controlling electromagnetic wave with tunable metasurfaces[C]//Proceedings of the 2015 International Symposium on Antennas and Propagation (ISAP). 2015.
    [22] Lv Yanhe, Ding Xiao, Wang Bingzhong, et al. Wideband polarisation-insensitive metasurface with tunable near-field scattering focusing characteristic[J]. Electronics Letters, 2019, 55(14): 776-777. doi: 10.1049/el.2019.1275
    [23] Liu Fu, Tsilipakos O, Pitilakis A, et al. Intelligent metasurfaces with continuously tunable local surface impedance for multiple reconfigurable functions[J]. Physical Review Applied, 2019, 11: 044024. doi: 10.1103/PhysRevApplied.11.044024
    [24] Wu Zhanni, Ra'di Y, Grbic A. Tunable metasurfaces: a polarization rotator design[J]. Physical Review X, 2019, 9: 011036.
    [25] Yoo M, Lim S. Active metasurface for controlling reflection and absorption properties[J]. Applied Physics Express, 2014, 7: 112204. doi: 10.7567/APEX.7.112204
    [26] Bensafieddine D, Djerfaf F, Chouireb F, et al. Design of tunable microwave transmission lines using metamaterial cells[J]. Applied Physics A, 2017, 123(4): 248. doi: 10.1007/s00339-017-0869-6
    [27] Wu P C, Cai Hong, Gu Yuandong, et al. Dynamic metasurface for broadband electromagnetic modulator in reflection[C]//Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems. 2016: 230-233.
    [28] Odit M, Kapitanova P, Andryieuski A, et al. Experimental demonstration of water based tunable metasurface[J]. Applied Physics Letters, 2016, 109: 011901. doi: 10.1063/1.4955272
    [29] Yang Hujiang, Yu Tianlin, Wang Qingmin, et al. Wave manipulation with magnetically tunable metasurfaces[J]. Scientific Reports, 2017, 7: 5441. doi: 10.1038/s41598-017-05625-1
    [30] 赵怿哲, 黄成, 卿安永. 基于液晶的U波段电控移相超材料[J]. 强激光与粒子束, 2019, 31:063001. (Zhao Yizhe, Huang Cheng, Qing Anyong. Voltage tunable metamaterial for phase shifting at U-band based on liquid crystal[J]. High Power Laser and Particle Beams, 2019, 31: 063001
    [31] Yang Xiaoqing, Zhang Di, Wu Shiyue, et al. Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution[J]. Scientific Reports, 2017, 7: 3190. doi: 10.1038/s41598-017-03439-9
    [32] Sun Lili, Zhang Hao, Dong Guohua, et al. Dynamically tunable terahertz anomalous refraction and reflection based on graphene metasurfaces[J]. Optics Communications, 2019, 446: 10-15. doi: 10.1016/j.optcom.2019.04.058
    [33] Yao Wei, Tang Linlong, Wang Jun, et al. Spectrally and spatially tunable terahertz metasurface lens based on graphene surface plasmons[J]. IEEE Photonics Journal, 2018, 10: 4800909.
    [34] Arbabi E, Arbabi A, Kamali S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1): 812. doi: 10.1038/s41467-018-03155-6
    [35] Du Zhiyuan, Hu Bin, Liu Weiguang, et al. Tunable beam deflector by mutual motion of cascaded bilayer metasurfaces[J]. Journal of Optics, 2019, 21: 115101. doi: 10.1088/2040-8986/ab3e7a
    [36] Shang Yuping, Lei Xue, Liao Cheng, et al. Frequency-selective structures with suppressed reflection through passive phase cancellation[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1192-1197. doi: 10.1109/TAP.2019.2940495
    [37] Modi A Y, Balanis C A, Birtcher C R, et al. New class of RCS-reduction metasurfaces based on scattering cancellation using array theory[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(1): 298-308. doi: 10.1109/TAP.2018.2878641
    [38] Yu Jun, Jiang Wen, Gong Shuxi. Wideband angular stable absorber based on spoof surface plasmon polariton for RCS reduction[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(7): 1058-1062. doi: 10.1109/LAWP.2020.2988089
    [39] Sharma A, Dwari S, Kanaujia B K, et al. In-band RCS reduction and isolation enhancement of a 24 GHz radar antenna using metamaterial absorber for sensing and automotive radar applications[J]. IEEE Sensors Journal, 2020, 20(21): 13086-13093. doi: 10.1109/JSEN.2020.3002337
    [40] 雷雪, 邹义童, 尚玉平, 等. 基于超表面的钝二面角结构后向散射增强设计[J]. 电子元件与材料, 2019, 38(8):99-105. (Lei Xue, Zou Yitong, Shang Yuping, et al. Backscattering enhancement of an obtuse dihedral corner structure through metasurface[J]. Electronic Components and Materials, 2019, 38(8): 99-105
    [41] 丰茂昌, 李勇峰, 张介秋, 等. 一种宽角域散射增强超表面的研究[J]. 物理学报, 2018, 67:198101. (Feng Maochang, Li Yongfeng, Zhang Jieqiu, et al. Research of a wide-angle backscattering enhancement metasurface[J]. Acta Physica Sinica, 2018, 67: 198101 doi: 10.7498/aps.67.20181053
    [42] Shang Yuping, Shen Zhongxiang, Feng Keming. Enhancement of backscattering by a conducting cylinder coated with gradient metasurface[J]. Journal of Applied Physics, 2016, 120: 045109. doi: 10.1063/1.4959986
    [43] Shang Yuping, Shen Zhongxiang. Electromagnetic retroreflection augmented by spherical and conical metasurfaces[J]. Journal of Applied Physics, 2017, 122: 205104. doi: 10.1063/1.5004252
    [44] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
  • 加载中
图(10)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  32
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-10
  • 修回日期:  2021-02-25
  • 网络出版日期:  2021-03-11

目录

    /

    返回文章
    返回