留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HIRFL-CSRE 脉冲堆积式高频数字低电平系统

周睿怀 丛岩 许哲 王新宇 付昕 李世龙 韩小东

周睿怀, 丛岩, 许哲, 等. HIRFL-CSRE 脉冲堆积式高频数字低电平系统[J]. 强激光与粒子束, 2021, 33: 044004. doi: 10.11884/HPLPB202133.200357
引用本文: 周睿怀, 丛岩, 许哲, 等. HIRFL-CSRE 脉冲堆积式高频数字低电平系统[J]. 强激光与粒子束, 2021, 33: 044004. doi: 10.11884/HPLPB202133.200357
Zhou Ruihuai, Cong Yan, Xu Zhe, et al. Barrier bucket digital low level RF system in HIRFL-CSRe[J]. High Power Laser and Particle Beams, 2021, 33: 044004. doi: 10.11884/HPLPB202133.200357
Citation: Zhou Ruihuai, Cong Yan, Xu Zhe, et al. Barrier bucket digital low level RF system in HIRFL-CSRe[J]. High Power Laser and Particle Beams, 2021, 33: 044004. doi: 10.11884/HPLPB202133.200357

HIRFL-CSRE 脉冲堆积式高频数字低电平系统

doi: 10.11884/HPLPB202133.200357
基金项目: 国家自然科学基金项目(11975289)
详细信息
    作者简介:

    周睿怀(1992—),男,硕士研究生,从事重离子加速器高频系统方面的研究;zhourh@impcas.ac.cn

    通讯作者:

    丛 岩(1982—),男,博士,从事重离子加速器高频系统方面的研究;congyan@impcas.ac.cn

  • 中图分类号: TL503.2

Barrier bucket digital low level RF system in HIRFL-CSRe

  • 摘要: 为突破传统束流堆积方式瓶颈、提高重离子流强,兰州重离子加速器冷却储存实验环(HIRFL-CSRe)将采用移动式脉冲堆积方案(Moving Barrier Bucket)。该方案要求高频系统能产生高精度的单正弦电压,然而由于Barrier Bucket(BB)电压的宽带特性以及高频系统的非线性,高频腔内的BB电压存在着严重的失真问题。针对此问题,在全面分析了BB电压波形特性以及高频系统的频率响应的基础上,设计了BB电压预失真前馈控制方案,并详细描述了该方案的原理、仿真、软硬件设计以及实际测试结果。研究成果将应用于HIRFL-CSRe的BB束流堆积实验以及十二五强流重离子加速器(HIAF)的BB堆积模式。
  • 图  1  HIRFL-CSRe高频系统示意图

    Figure  1.  Diagram of HIRFL-CSRe RF system

    图  2  理想的BB波形

    Figure  2.  Desired BB voltage

    图  3  实测的BB波形

    Figure  3.  Measured BB voltage

    图  4  实测的BB高频系统幅频响应和相频响应

    Figure  4.  Measured amplitude response and phase response of BB RF system

    图  5  BB电压波形的仿真与实测对比

    Figure  5.  Comparison of simulated and measured BB voltage

    图  6  预失真控制原理图

    Figure  6.  Block diagram of predistortion control

    图  7  预失真程序构架图

    Figure  7.  Block diagram of predistortion program

    图  8  硬件程序主要构架示意图

    Figure  8.  Main structure of hardware program

    图  9  软件程序流程图

    Figure  9.  Diagram of software program

    图  10  低电平系统硬件板卡结构图

    Figure  10.  Structure of LLRF system’s hardware board

    图  11  高频数字低电平板卡

    Figure  11.  Digital LLRF hardware board

    图  12  功率源65%增益下的测试结果

    Figure  12.  Test results at 65% gain of amplifier

    表  1  HIRFL-CSRe高频系统参数

    Table  1.   Parameters of HIRFL-CSRe RF system

    cavity parametervalueamplifier parametervalueLLRF componentversion/type
    Q(1.33~15 MHz)0.5~0.9model numberModel600A225AOSWindows 10
    half-cavity impedance207 Ωrated power600 WFPGAXC5VSX95T
    resonance frequency5 MHzbandwidth10 kHz~250 MHzADCADS62P49
    operating frequency1.33~15 MHzDACAD9122
    下载: 导出CSV

    表  2  Barrier Bucket实验参数

    Table  2.   Experimental parameters of Barrier Bucket

    ion speciesenergy/
    (MeV·u−1
    magnetic
    stiffness/Tm
    single sine
    frequency/MHz
    repetition
    frequency/MHz
    voltage/kVbucket height
    12C6+2004.35.01.3319.3×10−4
    下载: 导出CSV

    表  3  实验结果

    Table  3.   Results of experiments

    gain/%peak to peak/V (uncorrected/static/dynamic)positive half cycle/V (uncorrected/static/dynamic)asymmetric distortion/% (uncorrected/static/dynamic)ringing distortion/% (uncorrected/static/dynamic)
    35 104/100/100 42.0/47.4/49.6 47.6/11.0/1.6 63.1/9.3/4.4
    50 202/200/199 80.0/94/99 52.5/12.8/1.0 62.5/8.5/4.6
    60 300/305/306 118/142/152 54.2/14.8/1.3 62.7/8.5/4.6
    65 402/402/409 158/188/204 54.4/13.8/0.5 64.6/10.6/4.9
    70 500/500/500 186/230/247 68.8/17.4/2.4 62.4/11.3/4.7
    76 598/596/606 222/266/295 69.4/24.0/5.4 65.8/13.5/8.2
    83 694/700/706 256/300/328 71.1/33.3/15.2 70.3/14.0/9.9
    100 793/800/799 290/350/362 73.4/28.6/20.7 72.4/17.1/10.6
    下载: 导出CSV
  • [1] Meshkov I N. Method of barrier voltages in cyclic accelerators[J]. Physics of Particles and Nuclei, 2014, 45(2): 452-471. doi: 10.1134/S1063779614020038
    [2] Bhat C M. Applications of barrier bucket RF systems at Fermilab[R]. FERMILAB-CONF-06-102-AD, 2006.
    [3] Griffin J E, Ankenbrandt C, Maclachlan J A, et al. Isolated bucket RF systems in the Fermilab antiproton facility[J]. IEEE Transactions on Nuclear Science, 1983, 30(4): 3502-3504. doi: 10.1109/TNS.1983.4336705
    [4] Chou W, Griffin J, Ng K Y, et al. Barrier RF stacking at Fermilab[C]//Proceedings of the 2003 Particle Accelerator Conference. Portland: IEEE, 2003.
    [5] Gutbrod H, Augustin I, Eickhoff H. FAIR baseline technical report[R]. GSI, 2006.
    [6] Bhat C M. Recycler barrier RF buckets[R]. FERMILAB-FN-0916-AD, 2012.
    [7] Sidorin A O, Meshkov I N, Seleznev I A, et al. BETACOOL program for simulation of beam dynamics in storage rings[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 558(1): 325-328.
    [8] Klingbeil H, Laier U, Lens D. Theoretical foundations of synchrotron and storage ring RF systems[M]. Cham: Springer, 2015.
    [9] Nomura M, Yamamoto M, Schnase A, et al. The origin of magnetic alloy core buckling in J-PARC 3 GeV RCS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 623(3): 903-909. doi: 10.1016/j.nima.2010.08.111
    [10] 梁路, 许哲, 金鹏, 等. 同步加速器Barrier Bucket高频电压的研究[J]. 强激光与粒子束, 2016, 28:125104. (Liang Lu, Xu Zhe, Jin Peng, et al. Research on barrier bucket voltage in synchrotron[J]. High Power Laser and Particle Beams, 2016, 28: 125104 doi: 10.11884/HPLPB201628.160104
    [11] Harzheim J, Domont-Yankulova D, Groß K, et al. Input signal generation for barrier bucket RF systems at GSI[C]//Proceedings of the 8th International Particle Accelerator Conference. 2017.
    [12] 曾禹村, 张宝俊, 沈庭芝, 等. 信号与系统[M]. 3版. 北京: 北京理工大学出版社, 2010: 104-229.

    Zeng Yucun, Zhang Baojun, Shen Tingzhi, et al. Signals and systems[M]. 3rd ed. Beijing: Beijing Institute of Technology Press, 2010: 104-229
    [13] Czarski T, Pozniak K, Romaniuk R, et al. Cavity control system essential modeling for TESLA linear accelerator[C]//Proceedings of SPIE—The International Society for Optical Engineering. 2003.
    [14] Delayen J R, Harwood L H. Determination of low level RF control requirements for superconducting cavities from microphonics measurements[C]//Proceedings of the 2003 Particle Accelerator Conference. 2003.
    [15] 吴涛, 缪康. Verilog传奇——从电路出发的HDL代码设计[M]. 北京: 电子工业出版社, 2016: 391-421.

    Wu Tao, Miao Kang. Snorkeling in Verilog bay[M]. Beijing: Publishing House of Electronics Industry, 2016: 391-421
    [16] 胡伟武, 汪文祥, 吴瑞阳, 等. 计算机体系结构[M]. 2版. 北京: 清华大学出版社, 2017: 199-212.

    Hu Weiwu, Wang Wenxiang, Wu Ruiyang, et al. Computer architecture[M]. 2nd ed. Beijing: Tsinghua University Press, 2017: 199-212
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  1130
  • HTML全文浏览量:  355
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-31
  • 修回日期:  2021-02-08
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-05-02

目录

    /

    返回文章
    返回