留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光中脉冲内差频技术进展

杨雪梅 田坎 何林珍 王炜哲 梁厚昆

杨雪梅, 田坎, 何林珍, 等. 飞秒激光中脉冲内差频技术进展[J]. 强激光与粒子束, 2021, 33: 111004. doi: 10.11884/HPLPB202133.210246
引用本文: 杨雪梅, 田坎, 何林珍, 等. 飞秒激光中脉冲内差频技术进展[J]. 强激光与粒子束, 2021, 33: 111004. doi: 10.11884/HPLPB202133.210246
Yang Xuemei, Tian Kan, He Linzhen, et al. Progress on intra-pulse difference frequency generation in femtosecond laser[J]. High Power Laser and Particle Beams, 2021, 33: 111004. doi: 10.11884/HPLPB202133.210246
Citation: Yang Xuemei, Tian Kan, He Linzhen, et al. Progress on intra-pulse difference frequency generation in femtosecond laser[J]. High Power Laser and Particle Beams, 2021, 33: 111004. doi: 10.11884/HPLPB202133.210246

飞秒激光中脉冲内差频技术进展

doi: 10.11884/HPLPB202133.210246
基金项目: 国家自然科学基金项目(62075144); 四川大学工科特色团队基金项目(2020SCUNG105)
详细信息
    作者简介:

    杨雪梅,yangxuemei@stu.scu.edu.cn

    通讯作者:

    梁厚昆,hkliang@scu.edu.cn

  • 中图分类号: TN216

Progress on intra-pulse difference frequency generation in femtosecond laser

  • 摘要:

    中红外激光具有多种优势,可以广泛地用到生物、化学、物理等科学研究领域。通常采用直接激射和非线性频率转换这两种方式产生中红外激光,然而,为了实现中红外宽带超短脉冲的发射,非线性频率下转换是现今的唯一方法。脉冲内差频(IP-DFG)是一种简单的非线性频率转换方法,文中对红外IP-DFG的工作做了详细的回顾,从中红外激光晶体和基于IP-DFG产生具有超宽带的中红外超短脉冲的先进工作两个方面做了综述和评论,分别比较了非线性晶体类型、驱动脉冲源、产生超宽带中红外脉冲的光谱范围、转化效率等,并在最后讨论和阐明了IP-DFG领域面临的机遇和挑战。

  • 图  1  基于Yb:YAG的MIR生成和检测设置

    Figure  1.  MIR generation and detection setup

    图  2  基于OP-Gap的中红外生成装置

    Figure  2.  Mid-infrared generation based on OP-Gap

    图  3  自压缩和MIR生成设置

    Figure  3.  Self-compression and MIR generation setup

    图  4  IP-DFG的实验设置示意图

    Figure  4.  Schematic of the experimental setup for IPDFG

    图  5  基于准相位匹配的IP-DFG实验装置

    Figure  5.  IP-DFG based on quasi-phase matching

    图  6  相干中红外辐射源的实验原理图

    Figure  6.  Schematic experimental setup for IPDFG

    图  7  IP-DFG装置的示意图

    Figure  7.  Schematic of the IP-DFG setup

    图  8  (a)克尔透镜锁模Cr:ZnS振荡器和放大器(b)是MIR生成设置的示意图

    Figure  8.  (a) Kerr-lens mode-locked Cr:ZnS oscillator and amplifiers, (b) Schematic of the MIR generation setup

    图  9  实验装置示意图

    Figure  9.  Schematic of experimental setup

    图  10  实验原理图

    Figure  10.  Schematic of the system layout adopted by Ugaitz  Elu et al

    图  11  实验原理图

    Figure  11.  Schematic of the system layout adopted by Dauiel Lesko et al

    表  1  不同非线性晶体的比较

    Table  1.   Comparison of different MIR nonlinear crystals

    nonlinear crystaltransparency/μmnonlinear coefficient/(pm·V−1bandgap/eV
    KTA 0.35~5 1.97 3.6
    LNO 0.33~5.5 4.11 4.2
    BBO 0.19~3 1.48 2.25
    AGS 0.5~13 13.7 2.7
    AGSe 0.75~15 58 1.77
    BGSe 0.47~18 24.3 2.64
    CSP 0.5~9 85.4 2.45
    ZGP 1.8~12 70 2
    GaSe 0.8~14 70−90 2.1
    LGS 0.32~11.6 5.9 3.76
    OP-GaAs 0.9~17 94 2.1
    OP-GaP 0.57~12 70 2.26
    下载: 导出CSV

    表  2  MIR激光脉冲的最新成果

    Table  2.   The latest results of MIR laser pulses

    pump wavelength/μmnonlinear crystalIP-DFG
    spectral span/μm
    conversion efficiencyreference
    1.03LGS8~110.037[10]
    1.57OP-GaP4~120.071[12]
    1.9GaSe5~200.13[13]
    2GaSe7.3~16.51.4[14]
    2ZnSe2.7~200.51[16]
    2.1AGSe7~110.8[17]
    2.5GaSe4.3~17.60.22[18]
    2.5ZGP5.8~12.53.3[18]
    1.9GaSe2.7~170.13[19]
    3GaSe6~13.25.3[20]
    3.2BGGSe0.34~402[21]
    下载: 导出CSV
  • [1] 尹文龙, 康彬, 邓建国. 新型硫族化合物在中红外非线性光学晶体方面研究进展[J]. 强激光与粒子束, 2014, 26:071009. (Yin Wenlong, Kang Bin, Deng Jianguo. Research progress of new chalcogenides in mid-infrared nonlinear optical crystals[J]. High Power Laser and Particle Beams, 2014, 26: 071009 doi: 10.11884/HPLPB201426.071009
    [2] Li Lingqi, Nie Weijie, Li Ziqi, et al. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications[J]. Scientific Reports, 2017, 7: 7034. doi: 10.1038/s41598-017-07587-w
    [3] Manceau J M, Loukakos P A, Tzortzakis S. Direct acoustic phonon excitation by intense and ultrashort terahertz pulses[J]. Applied Physics Letters, 2010, 97: 251904. doi: 10.1063/1.3529466
    [4] Teichmann S M, Silva F, Cousin S L, et al. 0.5-keV soft X-ray attosecond continua[J]. Nature Communications, 2016, 7: 11493. doi: 10.1038/ncomms11493
    [5] 鲁燕华, 王卫民, 彭跃峰, 等. 磷锗锌光学参量振荡器技术研究[J]. 强激光与粒子束, 2006, 18(8):1261-1264. (Lu Yanhua, Wang Weimin, Peng Yuefeng, et al. Zinc germanium phosphide optical parametric oscillator[J]. High Power Laser and Particle Beams, 2006, 18(8): 1261-1264
    [6] Ghimire S, DiChiara A D, Sistrunk E, et al. Observation of high-order harmonic generation in a bulk crystal[J]. Nature Physics, 2011, 7(2): 138-141. doi: 10.1038/nphys1847
    [7] Blaga C I, Xu Junliang, Dichiara A D, et al. Imaging ultrafast molecular dynamics with laser-induced electron diffraction[J]. Nature, 2012, 483(7388): 194-197. doi: 10.1038/nature10820
    [8] Schubert O, Hohenleutner M, Langer F, et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nature Photonics, 2014, 8(2): 119-123. doi: 10.1038/nphoton.2013.349
    [9] Petersen C R, Møller U, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 2014, 8(11): 830-834. doi: 10.1038/nphoton.2014.213
    [10] Pupeza I, Sánchez D, Zhang Jinwei, et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate[J]. Nature Photonics, 2015, 9(11): 721-724. doi: 10.1038/nphoton.2015.179
    [11] Keilmann F, Gohle C, Holzwarth R. Time-domain mid-infrared frequency-comb spectrometer[J]. Optics Letters, 2004, 29(13): 1542-1544. doi: 10.1364/OL.29.001542
    [12] Timmers H, Kowligy A, Lind A, et al. Molecular fingerprinting with bright, broadband infrared frequency combs[J]. Optica, 2018, 5(6): 727-732. doi: 10.1364/OPTICA.5.000727
    [13] Zhang Jinwei, Mak K F, Nagl N, et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1[J]. Light: Science & Applications, 2018, 7: 17180.
    [14] Yumoto M, Saito N, Lin Taichen, et al. High-energy, nanosecond pulsed Cr: CdSe laser with a 2.25-3.08 μm tuning range for laser biomaterial processing[J]. Biomedical Optics Express, 2018, 9(11): 5645-5653. doi: 10.1364/BOE.9.005645
    [15] Gaida C, Gebhardt M, Heuermann T, et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation[J]. Light: Science & Applications, 2018, 7: 94.
    [16] Zhang Jinwei, Fritsch K, Wang Qing, et al. Intra-pulse difference-frequency generation of mid-infrared (2.7-20 μm) by random quasi-phase-matching[J]. Optics Letters, 2019, 44(12): 2986-2989. doi: 10.1364/OL.44.002986
    [17] Novák O, Krogen P R, Kroh T, et al. Femtosecond 8.5 μm source based on intrapulse difference-frequency generation of 2.1 μm pulses[J]. Optics Letters, 2018, 43(6): 1335-1338. doi: 10.1364/OL.43.001335
    [18] Vasilyev S, Moskalev I S, Smolski V O, et al. Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-μm pulses[J]. Optica, 2019, 6(1): 111-114. doi: 10.1364/OPTICA.6.000111
    [19] Wang Qing, Zhang Jinwei, Kessel A, et al. Broadband mid-infrared coverage (2–17 μm) with few-cycle pulses via cascaded parametric processes[J]. Optics Letters, 2019, 44(10): 2566-2569. doi: 10.1364/OL.44.002566
    [20] Liu Kun, Liang Houkun, Qu Shizhen, et al. High-energy mid-infrared intrapulse difference-frequency generation with 5.3% conversion efficiency driven at 3 µm[J]. Optics Express, 2019, 27(26): 37706-37713. doi: 10.1364/OE.27.037706
    [21] Elu U, Maidment L, Vamos L, et al. Seven-octave high-brightness and carrier-envelope-phase-stable light source[J]. Nature Photonics, 2021, 15(4): 277-280. doi: 10.1038/s41566-020-00735-1
    [22] Lesko D M B, Timmers H, Xing Sida, et al. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser[J]. Nature Photonics, 2021, 15(4): 281-286. doi: 10.1038/s41566-021-00778-y
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1202
  • HTML全文浏览量:  717
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-22
  • 修回日期:  2021-09-22
  • 网络出版日期:  2021-09-15
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回