留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率光纤激光受激拉曼散射效应研究新进展

张春 谢亮华 楚秋慧 刘玙 黄珊 宋华青 吴文杰 冯曦 李敏 沈本剑 李昊坤 陶汝茂 许立新 王建军

张春, 谢亮华, 楚秋慧, 等. 高功率光纤激光受激拉曼散射效应研究新进展[J]. 强激光与粒子束, 2022, 34: 021002. doi: 10.11884/HPLPB202234.210251
引用本文: 张春, 谢亮华, 楚秋慧, 等. 高功率光纤激光受激拉曼散射效应研究新进展[J]. 强激光与粒子束, 2022, 34: 021002. doi: 10.11884/HPLPB202234.210251
Zhang Chun, Xie Lianghua, Chu Qiuhui, et al. Research progress of stimulated Raman scattering effect in high power fiber lasers[J]. High Power Laser and Particle Beams, 2022, 34: 021002. doi: 10.11884/HPLPB202234.210251
Citation: Zhang Chun, Xie Lianghua, Chu Qiuhui, et al. Research progress of stimulated Raman scattering effect in high power fiber lasers[J]. High Power Laser and Particle Beams, 2022, 34: 021002. doi: 10.11884/HPLPB202234.210251

高功率光纤激光受激拉曼散射效应研究新进展

doi: 10.11884/HPLPB202234.210251
基金项目: 国家自然科学基金项目(61905226)
详细信息
    作者简介:

    张 春,wsrf@mail.ustc.edu.cn

    通讯作者:

    陶汝茂,supertaozhi@163.com

  • 中图分类号: TN242

Research progress of stimulated Raman scattering effect in high power fiber lasers

  • 摘要:

    由于具有高品质、高效率、高鲁棒性、结构紧凑等优点,光纤激光系统在近20年飞速发展,并得到广泛应用。然而发展至今,依旧存在着一些因素(如非线性效应、热效应、模式不稳定性等)限制着光纤激光系统功率的进一步提升。作为其中的一种主要限制因素,受激拉曼散射效应不仅降低了光纤激光器的输出效率,后向斯托克斯光还会提高系统的损毁风险。最近的研究结果表明,少模光纤中受激拉曼散射在引起模式不稳定性的同时,还会导致准静态的模式退化。因此,需要发展有效的拉曼抑制手段来突破现有瓶颈,促进高功率高光束质量光纤激光发展。在介绍高功率少模光纤激光中受激拉曼散射效应新表征的同时,从高功率光纤激光系统整体优化角度出发,总结整理了相关抑制技术研究新进展,并展望未来可能的研究方向。

  • 图  1  受激拉曼散射导致模式不稳定[15-16]

    Figure  1.  Transverse mode instability induced by stimulated Raman scattering[15-16]

    图  2  受激拉曼散射导致准静态模式退化[18]

    Figure  2.  Quasi-static mode distortion induced by stimulated Raman scattering[18]

    图  3  拉曼相对增益随氧化镱和氧化铝含量变化关系[23]

    Figure  3.  Relative Raman gain vs yttria + alumina content[23]

    图  4  8 kW单振荡器输出结果[8]

    Figure  4.  Output performance of 8 kW single-stage fiber laser[8]

    图  5  环形滤波光纤[37]

    Figure  5.  Filter fiber with a high-index cladding ring[37]

    图  6  圆形20/400 μm LCA双包层光纤[39]

    Figure  6.  Circular 20/400 μm LCA DCF[39]

    图  7  长周期光栅[54]

    Figure  7.  Long period gratings[54]

    图  8  啁啾倾斜布拉格光栅[5562]

    Figure  8.  Chirped and tilted fiber Bragg gratings[5562]

    图  9  时域抖动仿真和1 kW输出功率下仿真光谱[78]

    Figure  9.  Simulated temporal fluctuations and simulated spectra at the output power of ~1 kW[78]

    (a)-(d) simulated temporal fluctuations of seed 1 (OSC), seed 2 (with 500 m fibers), seed 3 (with 0.5 nm OC-FBG), and seed 5 (with 0.5 nm OC-FBG+500 m fibers); (e)-(h) simulated temporal fluctuations of SRS lights (from 1080 to 1150 nm) in the corresponding amplifiers; (i)-(l) simulated spectra at the output power of ~1 kW.

    表  1  近期光纤设计SRS抑制性能汇总

    Table  1.   Summary of the recent SRS mitigation performance by fiber design

    strategydiameter/μm (core/clad)performanceperiod
    materialsgain decrease ~3 dB2013—2018
    LMAconfined-dope fiber${A_{{\rm{eff}}}}$ 600 μm2~22 dB SNR (8 kW)2012—
    tapered fiber20/400 to 30/600no Raman Stokes light when output power reached 2170 W2019—
    SSC-YDF20/400+30/600+20/400no Raman Stokes light when output power reached 5008 W2018—
    delocalizationstar-shaped
    filter fiber
    10 (core)~17 dB (net suppression ratio)2006/2014
    decreasing fiber lengthLCA-DCF20/400SRS threshold increase from 1.6 to 2.4 kW2020—
    下载: 导出CSV

    表  2  光纤激光系统参数优化策略汇总

    Table  2.   Summary of the parameters optimization strategy in fiber laser system

    parameterguideline/methodparameterguideline/method
    wavelength of signal >1085 nm bandwidth of FBG in OSC wider
    fiber length <60 m reflective index of FBG in OSC lower
    core diameter >20 μm doping concentration lower
    seed power lower Raman noise of seed power <10−8 W
    pump methods backward gratings CTFBG/LPG
    external feedback large angle cleaving self-pulsation special designed seed sources
    FMW choosing the suitable dispersion value of fibers IM-FWM temporal stable pump
    下载: 导出CSV
  • [1] Snitzer E. Proposed fiber cavities for optical masers[J]. Journal of Applied Physics, 1961, 32(1): 36-39. doi: 10.1063/1.1735955
    [2] Liu Zejin, Jin Xiaoxi, Su Rongtao, et al. Development status of high power fiber lasers and their coherent beam combination[J]. Science China Information Sciences, 2019, 62: 41301. doi: 10.1007/s11432-018-9742-0
    [3] 周朴, 黄良金, 冷进勇, 等. 高功率双包层光纤激光器: 30周年的发展历程[J]. 中国科学:技术科学, 2020, 50(2):123-135. (Zhou Pu, Huang Liangjin, Leng Jinyong, et al. High-power double-cladding fiber lasers: a 30-year overview[J]. Scientia Sinica Technologica, 2020, 50(2): 123-135 doi: 10.1360/N092018-00409
    [4] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [5] Zhu Jiajian, Zhou Pu, Ma Yanxing, et al. Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers[J]. Optics Express, 2011, 19(19): 18645-18654. doi: 10.1364/OE.19.018645
    [6] Khitrov V, Minelly J D, Tumminelli R, et al. 3kW single-mode direct diode-pumped fiber laser[C]//Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications. 2014: 89610V.
    [7] Möller F, Krämer R G, Matzdorf C, et al. Multi-kW performance analysis of Yb-doped monolithic single-mode amplifier and oscillator setup[C]//Proceedings of SPIE 10897, Fiber Lasers XVI: Technology and Systems. 2019: 108970D.
    [8] Wang Y, Kitahara R, Kiyoyama W, et al. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad[C]//Proceedings of SPIE 11260, Fiber Lasers XVII: Technology and Systems. 2020: 1126022.
    [9] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
    [10] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241. doi: 10.1109/JSTQE.2014.2321279
    [11] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 2020, 12(2): 429-484. doi: 10.1364/AOP.385184
    [12] 李淳飞. 非线性光学: 原理和应用[M]. 上海: 上海交通大学出版社, 2015: 134-143

    Li Chunfei. Nonlinear optics: principle and applications[M]. Shanghai: Shanghai Jiao Tong University Press, 2015: 134-143
    [13] 王文亮. 大功率光纤激光器受激拉曼散射研究[D]. 长沙: 国防科技大学, 2014: 1-63

    Wang Wenliang. Stimulated Raman scattering in high power fiber lasers[D]. Changsha: National University of Defense Technology, 2014: 1-63
    [14] Naderi S, Dajani I, Grosek J, et al. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers[J]. Optics Express, 2016, 24(15): 16550-16565. doi: 10.1364/OE.24.016550
    [15] Distler V, Möller F, Strecker M, et al. Transverse mode instability in a passive fiber induced by stimulated Raman scattering[J]. Optics Express, 2020, 28(15): 22819-22828. doi: 10.1364/OE.398882
    [16] Distler V, Möller F, Yildiz B, et al. Experimental analysis of Raman-induced transverse mode instability in a core-pumped Raman fiber amplifier[J]. Optics Express, 2021, 29(11): 16175-16181. doi: 10.1364/OE.424842
    [17] Zhang Hanwei, Xiao Hu, Wang Xiaolin, et al. Mode dynamics in high-power Yb-Raman fiber amplifier[J]. Optics Letters, 2020, 45(13): 3394-3397. doi: 10.1364/OL.393879
    [18] Chu Qiuhui, Shu Qiang, Chen Zeng, et al. Experimental study of mode distortion induced by stimulated Raman scattering in high-power fiber amplifiers[J]. Photonics Research, 2020, 8(4): 595-600. doi: 10.1364/PRJ.383551
    [19] Gao Wei, Fan Wenhui, Ju Pei, et al. Effective suppression of mode distortion induced by stimulated Raman scattering in high-power fiber amplifiers[J]. High Power Laser Science and Engineering, 2021, 9: e20. doi: 10.1017/hpl.2021.13
    [20] Liu Wei, Ma Pengfei, Shi Chen, et al. Theoretical analysis of the SRS-induced mode distortion in large-mode area fiber amplifiers[J]. Optics Express, 2018, 26(12): 15793-15803. doi: 10.1364/OE.26.015793
    [21] Agrawal G P. Nonlinear fiber optics[M]. 4th ed. Oxford: Elsevier, 2007.
    [22] Dragic P D, Ballato J. Characterisation of Raman gain spectra in Yb: YAG-derived optical fibres[J]. Electronics Letters, 2013, 49(14): 895-896. doi: 10.1049/el.2013.1386
    [23] Dragic P D, Ballato J, Hawkins T. Compositional tuning of glass for the suppression of nonlinear and parasitic fiber laser phenomena[C]//Proceedings of SPIE 9081, Laser Technology for Defense and Security X. 2014: 908109.
    [24] Ballato J, Dragic P. Materials approaches to mitigating parasitic effects in optical networks: towards the perfect optical fiber[C]//Proceedings of the 18th International Conference on Transparent Optical Networks. 2016: 1-4.
    [25] Ballato J, Cavillon M, Dragic P. A unified materials approach to mitigating optical nonlinearities in optical fiber. I. Thermodynamics of optical scattering[J]. International Journal of Applied Glass Science, 2018, 9(2): 263-277. doi: 10.1111/ijag.12327
    [26] Ye Yun, Yang Baolai, Wang Peng, et al. Industrial 6 kW high-stability single-stage all-fiber laser oscillator based on conventional large mode area ytterbium-doped fiber[J]. Laser Physics, 2021, 31: 035104. doi: 10.1088/1555-6611/abdfc2
    [27] Mashiko Y, Nguyen H K, Kashiwagi M, et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression[C]//Proceedings of SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications. 2016: 972805.
    [28] Shima K, Ikoma S, Uchiyama K, et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing[C]//Proceedings of SPIE 10512, Fiber Lasers XV: Technology and Systems. 2018: 105120C.
    [29] 张志伦, 张芳芳, 林贤峰, 等. 国产部分掺杂光纤实现3 kW全光纤激光振荡输出[J]. 物理学报, 2020, 69:234205. (Zhang Zhilun, Zhang Fangfang, Lin Xianfeng, et al. Home-made confined-doped fiber with 3-kW all-fiber laser oscillating output[J]. Acta Physica Sinica, 2020, 69: 234205 doi: 10.7498/aps.69.20200620
    [30] Yang Baolai, Zhang Hanwei, Shi Chen, et al. High power monolithic tapered ytterbium-doped fiber laser oscillator[J]. Optics Express, 2019, 27(5): 7585-7592. doi: 10.1364/OE.27.007585
    [31] Ye Yun, Xi Xiaoming, Shi Chen, et al. Comparative study on transverse mode instability of fiber amplifiers based on long tapered fiber and conventional uniform fiber[J]. Laser Physics Letters, 2019, 16: 085109. doi: 10.1088/1612-202X/ab2acf
    [32] Tian Yuan, Chen Yizhu, Leng Jinyong, et al. Numerical modeling and optimization of cladding-pumped tapered fiber Raman amplifiers[J]. Optics Communications, 2018, 423: 6-11. doi: 10.1016/j.optcom.2018.03.084
    [33] Zeng Lingfa, Xi Xiaoming, Ye Yun, et al. A 1.8 kW fiber laser oscillator employing a section of spindle-shaped core ytterbium-doped fiber[J]. Laser Physics Letters, 2020, 17: 095104. doi: 10.1088/1612-202X/aba62d
    [34] 奚小明, 曾令筏, 叶云, 等. 基于国产双锥形光纤实现3 kW单模全光纤振荡器[J]. 中国激光, 2020, 47:0916001. (Xi Xiaoming, Zeng Lingfa, Ye Yun, et al. Single-mode all-fiber oscillator based on home-made dual-tapered fiber with 3kW output[J]. Chinese Journal of Lasers, 2020, 47: 0916001 doi: 10.3788/CJL202047.0916001
    [35] Zeng Lingfa, Pan Zhiyong, Xi Xiaoming, et al. 5 kW monolithic fiber amplifier employing homemade spindle-shaped ytterbium-doped fiber[J]. Optics Letters, 2021, 46(6): 1393-1396. doi: 10.1364/OL.418194
    [36] Zenteno L A, Wang J, Walton D T, et al. Suppression of Raman gain in single-transverse-mode dual-hole-assisted fiber[J]. Optics Express, 2005, 13(22): 8921-8926. doi: 10.1364/OPEX.13.008921
    [37] Fini J M, Mermelstein M D, Yan M F, et al. Distributed suppression of stimulated Raman scattering in an Yb-doped filter-fiber amplifier[J]. Optics Letters, 2006, 31(17): 2550-2552. doi: 10.1364/OL.31.002550
    [38] Fini J M, Nicholson J W. Fibers design with a bend-compensated cladding for distributed wavelength filtering[C]//Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications. 2014: 89610S.
    [39] Liu Rui, Yan Dapeng, Chen Ming, et al. Enhanced cladding pump absorption of ytterbium-doped double cladding fiber with internally modified cladding structures[J]. Optical Materials Express, 2020, 10(1): 36-45. doi: 10.1364/OME.10.000036
    [40] Wang Yong, Martinez-Rios A, Po H. Experimental study of stimulated Brillouin and Raman scatterings in a Q-switched cladding-pumped fiber laser[J]. Optical Fiber Technology, 2004, 10(2): 201-214. doi: 10.1016/j.yofte.2003.11.004
    [41] Wang Yong, Xu Changqing, Po Hong. Analysis of Raman and thermal effects in kilowatt fiber lasers[J]. Optics Communications, 2004, 242(4/6): 487-502.
    [42] Wang Yong. Stimulated Raman scattering in high-power double-clad fiber lasers and power amplifiers[J]. Optical Engineering, 2005, 44: 114202. doi: 10.1117/1.2128147
    [43] Ye Yun, Xi Xiaoming, Shi Chen, et al. Experimental study of 5-kW high-stability monolithic fiber laser oscillator with or without external feedback[J]. IEEE Photonics Journal, 2019, 11: 1503508.
    [44] Lai P Y, Chang Chunlin, Huang S L, et al. Effective suppression of stimulated Raman scattering in high power fiber amplifiers using double-pass scheme[C]//Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications. 2014: 89612T.
    [45] Zhang Tianzi, Ding Yingchun, Liu Zhongxuan, et al. An optimization of Raman effects in tandem-pumped Yb-doped kilowatt fiber amplifiers[C]//Proceedings of SPIE 9524, International Conference on Optical and Photonic Engineering. 2015: 95240Y.
    [46] 叶云, 王小林, 史尘, 等. 高功率掺镱光纤激光振荡器研究进展[J]. 激光与光电子学进展, 2018, 55:120006. (Ye Yun, Wang Xiaolin, Shi Chen, et al. Research progress in high power ytterbium doped fiber laser oscillator[J]. Laser & Optoelectronics Progress, 2018, 55: 120006
    [47] Ye Yun, Yang Baolai, Wang Xiaolin, et al. Experimental study of SRS threshold dependence on the bandwidths of fiber Bragg gratings in co-pumped and counter-pumped fiber laser oscillator[J]. Journal of Optics, 2019, 21: 025801. doi: 10.1088/2040-8986/aafa65
    [48] Schreiber T, Liem A, Freier E, et al. Analysis of stimulated Raman scattering in cw kW fiber oscillators[C]//Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications. 2014: 89611T.
    [49] Liu Wei, Ma Pengfei, Lv Haibin, et al. General analysis of SRS-limited high-power fiber lasers and design strategy[J]. Optics Express, 2016, 24(23): 26715-26721. doi: 10.1364/OE.24.026715
    [50] Lin Weixuan. Stimulated Raman scattering and intermodal coupling in continuous-wave high power fiber lasers[D]. Montreal: McGill University, 2018.
    [51] Jansen F, Nodop D, Jauregui C, et al. Suppression of stimulated Raman scattering in high-power fiber laser systems by lumped spectral filters[C]//Proceedings of SPIE 7580, Fiber Lasers VII: Technology, Systems, and Applications. 2010: 75802I.
    [52] Nodop D, Jauregui C, Jansen F, et al. Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers[J]. Optics Letters, 2010, 35(17): 2982-2984. doi: 10.1364/OL.35.002982
    [53] Heck M, Bock V, Krämer R G, et al. Mitigation of stimulated Raman scattering in high power fiber lasers using transmission gratings[C]//Proceedings of SPIE 10512, Fiber Lasers XV: Technology and Systems. 2018: 105121I.
    [54] Jiao Kerong, Shen Hua, Guan Zhiwen, et al. Suppressing stimulated Raman scattering in kW-level continuous-wave MOPA fiber laser based on long-period fiber gratings[J]. Optics Express, 2020, 28(5): 6048-6063. doi: 10.1364/OE.384760
    [55] Wang Meng, Zhang Yujing, Wang Zefeng, et al. Fabrication of chirped and tilted fiber Bragg gratings and suppression of stimulated Raman scattering in fiber amplifiers[J]. Optics Express, 2017, 25(2): 1529-1534. doi: 10.1364/OE.25.001529
    [56] Wang Meng, Hu Qihao, Liu Le, et al. Suppression of stimulated Raman scattering in a monolithic fiber laser oscillator using chirped and tilted fiber Bragg gratings[C]//Proceedings of SPIE 10811, High-Power Lasers and Applications IX. 2018: 108110V.
    [57] Wang Zefeng, Wang Meng, Hu Qihao. Filtering of stimulated Raman scattering in a monolithic fiber laser oscillator using chirped and tilted fiber Bragg gratings[J]. Laser Physics, 2019, 29: 075101. doi: 10.1088/1555-6611/ab1537
    [58] Jiao Kerong, Shu Jian, Shen Hua, et al. Fabrication of kW-level chirped and tilted fiber Bragg gratings and filtering of stimulated Raman scattering in high-power CW oscillators[J]. High Power Laser Science and Engineering, 2019, 7: 02000e31.
    [59] Zhao Xiaofan, Tian Xin, Hu Qihao, et al. Raman suppression in a high-power single-mode fiber oscillator using a chirped and tilted fiber Bragg grating[J]. Laser Physics Letters, 2021, 18: 035103. doi: 10.1088/1612-202X/abe46f
    [60] Wang Meng, Liu Le, Wang Zefeng, et al. Mitigation of stimulated Raman scattering in kilowatt-level diode-pumped fiber amplifiers with chirped and tilted fiber Bragg gratings[J]. High Power Laser Science and Engineering, 2019, 7: e18. doi: 10.1017/hpl.2019.1
    [61] Tian Xin, Zhao Xiaofan, Wang Meng, et al. Effective suppression of stimulated Raman scattering in direct laser diode pumped 5 kilowatt fiber amplifier using chirped and tilted fiber bragg gratings[J]. Laser Physics Letters, 2020, 17: 085104. doi: 10.1088/1612-202X/aba051
    [62] Wang Meng, Wang Zefeng, Liu Le, et al. Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings[J]. Photonics Research, 2019, 7(2): 167-171. doi: 10.1364/PRJ.7.000167
    [63] Tian Xin, Zhao Xiaofan, Wang Meng, et al. Influence of Bragg reflection of chirped tilted fiber Bragg grating on Raman suppression in high-power tandem pumping fiber amplifiers[J]. Optics Express, 2020, 28(13): 19508-19517. doi: 10.1364/OE.396250
    [64] 张俊, 冯莹, 陈爽. 大功率双包层光纤激光器拉曼效应分析[J]. 量子电子学报, 2007, 24(6):757-762. (Zhang Jun, Feng Ying, Chen Shuang. Analysis of Raman effects in high power double-clad fiber laser[J]. Chinese Journal of Quantum Electronics, 2007, 24(6): 757-762 doi: 10.3969/j.issn.1007-5461.2007.06.019
    [65] Chen Heng, Cao Jianqiu, Huang Zhihe, et al. Experimental investigations on multi-kilowatt all-fiber distributed side-pumped oscillators[J]. Laser Physics, 2019, 29: 075103. doi: 10.1088/1555-6611/ab1de4
    [66] Chen Heng, Cao Jianqiu, Huang Zhihe, et al. 3-kilowatt all-fiber distributed side-pumped oscillator with high SRS suppression[C]//Proceedings of 2018 Asia Communications and Photonics Conference. 2018.
    [67] Huang Zhihe, Cao Jianqiu, An Yingye, et al. A kilowatt all-fiber cascaded amplifier[J]. IEEE Photonics Technology Letters, 2015, 27(16): 1683-1686. doi: 10.1109/LPT.2015.2426191
    [68] Ying Hanyuan, Yu Yu, Cao Jianqiu, et al. 2 kW pump-light-stripper-free distributed side-coupled cladding-pumped fiber oscillator[J]. Laser Physics Letters, 2017, 14: 065102. doi: 10.1088/1612-202X/aa6dc8
    [69] Wang Jianming, Yan Dapeng, Xiong Songsong, et al. High power all-fiber amplifier with different seed power injection[J]. Optics Express, 2016, 24(13): 14463-14469. doi: 10.1364/OE.24.014463
    [70] Tec P S, Lewis R J, Alam S U, et al. 200 W Diffraction limited, single-polarization, all-fiber picosecond MOPA[J]. Optics Express, 2013, 21(22): 25883-25889. doi: 10.1364/OE.21.025883
    [71] Ying Hanyuan, Cao Jianqiu, Yu Yu, et al. Raman-noise enhanced stimulated Raman scattering in high-power continuous-wave fiber amplifier[J]. Optik, 2017, 144: 163-171. doi: 10.1016/j.ijleo.2017.06.098
    [72] Hu Shuling, Zhang Chunxi, Wang Shouchao, et al. Self-pulsing behavior in high-power ytterbium-doped fiber lasers[C]//Proceedings of SPIE 6823, High-Power Lasers and Applications IV. 2008: 68230D.
    [73] Bock V, Schultze T, Liem A, et al. The influence of different seed sources on Stimulated Raman Scattering in fiber amplifiers[C]//The European Conference on Lasers and Electro-Optics 2017. 2017: CJ_4_3.
    [74] Li Tenglong, Zha Congwen, Sun Yinhong, et al. 3.5 kW bidirectionally pumped narrow-linewidth fiber amplifier seeded by white-noise-source phase-modulated laser[J]. Laser Physics, 2018, 28: 105101. doi: 10.1088/1555-6611/aace37
    [75] Lin H, Tao R, Li C, et al. 3.7 kW monolithic narrow linewidth single mode fiber laser through simultaneously suppressing nonlinear effects and mode instability[J]. Optics Express, 2019, 27(7): 9716-9724. doi: 10.1364/OE.27.009716
    [76] Liu Wei, Ma Pengfei, Lv Haibin, et al. Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source[J]. Optics Express, 2016, 24(8): 8708-8717. doi: 10.1364/OE.24.008708
    [77] Bock V, Liem A, Schreiber T, et al. Explanation of Stimulated Raman Scattering in high power fiber systems[C]//Proceedings of SPIE 10512, Fiber Lasers XV: Technology and Systems. 2018: 105121F.
    [78] Li Tenglong, Ke Weiwei, Ma Yi, et al. Suppression of stimulated Raman scattering in a high-power fiber amplifier by inserting long transmission fibers in a seed laser[J]. Journal of the Optical Society of America B, 2019, 36(6): 1457-1465. doi: 10.1364/JOSAB.36.001457
    [79] Wang Yanshan, Peng Wanjing, Ke Weiwei, et al. Influence of seed instability on the stimulated Raman scattering of high power narrow linewidth fiber amplifier[J]. Optical and Quantum Electronics, 2020, 52: 193. doi: 10.1007/s11082-020-02299-4
    [80] Yin Lu, Han Zhigang, Shen Hua, et al. Suppression of inter-modal four-wave mixing in high-power fiber lasers[J]. Optics Express, 2018, 26(12): 15804-15818. doi: 10.1364/OE.26.015804
    [81] Babin S A, Churkin D V, Ismagulov A E, et al. Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser[J]. Journal of the Optical Society of America B, 2007, 24(8): 1729-1738. doi: 10.1364/JOSAB.24.001729
    [82] Hu Man, Ke Weiwei, Yang Yifeng, et al. Low threshold Raman effect in high power narrowband fiber amplifier[J]. Chinese Optics Letters, 2016, 14: 011901. doi: 10.3788/COL201614.011901
    [83] Liu Wei, Ma Pengfei, Zhou Pu, et al. Effects of four-wave-mixing in high-power Raman fiber amplifiers[J]. Optics Express, 2020, 28(1): 593-606. doi: 10.1364/OE.381761
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  2077
  • HTML全文浏览量:  637
  • PDF下载量:  396
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-27
  • 修回日期:  2021-12-10
  • 网络出版日期:  2021-12-18
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回