留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能激光系统内光路热效应建模与仿真

胡鹏 张建柱 张飞舟

胡鹏, 张建柱, 张飞舟. 高能激光系统内光路热效应建模与仿真[J]. 强激光与粒子束, 2022, 34: 011008. doi: 10.11884/HPLPB202234.210296
引用本文: 胡鹏, 张建柱, 张飞舟. 高能激光系统内光路热效应建模与仿真[J]. 强激光与粒子束, 2022, 34: 011008. doi: 10.11884/HPLPB202234.210296
Hu Peng, Zhang Jianzhu, Zhang Feizhou. Modeling and analysis of inner thermal effects in high energy laser system[J]. High Power Laser and Particle Beams, 2022, 34: 011008. doi: 10.11884/HPLPB202234.210296
Citation: Hu Peng, Zhang Jianzhu, Zhang Feizhou. Modeling and analysis of inner thermal effects in high energy laser system[J]. High Power Laser and Particle Beams, 2022, 34: 011008. doi: 10.11884/HPLPB202234.210296

高能激光系统内光路热效应建模与仿真

doi: 10.11884/HPLPB202234.210296
详细信息
    作者简介:

    胡 鹏,hu_peng@iapcm.ac.cn

    通讯作者:

    张飞舟,zhangfeizhou@163.com

  • 中图分类号: TN012;O436

Modeling and analysis of inner thermal effects in high energy laser system

  • 摘要: 高能激光系统内光路热效应是影响系统性能的重要因素,介绍了内光路中光学元件、介质气体热效应物理模型,分析了影响热效应的主要因素,并开展了热效应变化规律研究。针对光学元件,重点研究了元件吸收率、元件材料特性、光斑分布对反射镜、窗口镜、分光镜热像差的影响规律,指出吸收率主要影响热像差的大小,而元件基底材料特性和激光分布影响热像差时间和空间变化。针对介质气体,指出介质气体升温后重力引起的自然对流是影响气体热像差的主要物理因素,细致研究了热像差随时间的变化规律,介绍了降低封闭与开放式内光路介质气体热像差的措施与方法。介绍了激光仿真软件平台Easylaser多物理仿真模块,搭建了包含反射镜、窗口镜、分光镜和介质气体的内光路计算模型,通过光-热-力-控多物理耦合仿真,研究了反射镜与窗口镜、介质气体与窗口镜热像差补偿效应,给出了激光传输远场光斑特征,表明了Easylaser的多物理仿真模块具备对内光路热效应综合仿真分析能力。
  • 图  1  硅镜表面吸收率对热像差的影响

    Figure  1.  Thermal aberrations of Si reflector of different absorptivity

    图  2  石英和白宝石分光镜反射和透射热像差

    Figure  2.  Thermal aberrations of reflection and transmission for SiO2 and Al2O3

    图  3  不同热扩散长度随时间变化

    Figure  3.  Thermal diffusion of different materials vs time

    图  4  石英镜在激光辐照下透射热像差分布

    Figure  4.  Distribution of thermal aberration of SiO2 under uniform and non-uniform laser irradiation

    图  5  石英镜在激光辐照下透射热相差RMS随时间变化

    Figure  5.  RMS of thermal aberration under uniform and non-uniform laser spot irradiation as a function of time

    图  6  介质热效应水平管道模型

    Figure  6.  Sketch of a horizontal closed tube

    图  7  封闭水平管道介质气体热效应

    Figure  7.  Thermal aberrations in a closed horizontal tube

    图  8  不同时刻管道内介质气体温度分布

    Figure  8.  Temperature distribution of media gas at different time

    图  9  不同压强时的介质气体热像差

    Figure  9.  Thermal aberrations of media gas under different pressure

    图  10  光斑与管道口径比对介质气体热像差的影响

    Figure  10.  Thermal aberrations of gas of different ε

    图  11  光源组件界面

    Figure  11.  Component interface of laser source

    图  12  反射镜组件界面

    Figure  12.  Component interface of reflector

    图  13  通道介质组件界面

    Figure  13.  Component interface of media gas

    图  14  光束波面和光束远场诊断组件

    Figure  14.  Component of analysis for wavefront and laser in far-field

    图  15  内光路热效应分析光路图

    Figure  15.  Sketch of inner thermal effect simulation in Easylaser

    图  16  窗口镜与反射镜、介质气体热像差的互补偿效应

    Figure  16.  Complementary effect of thermal aberration between optical components and media gas

    图  17  远场光斑分布

    Figure  17.  Laser distribution in far-field

    图  18  激光远场传输特征分析

    Figure  18.  Characters of laser propagation in far-field

    表  1  元件材料物理参数

    Table  1.   Physical values of the glasses

    materialdensity/
    (kg·m−3)
    heat capacity/
    (J·K−1·kg−1)
    thermal conductivity/
    (W·m−1·K−1)
    Young’s
    modulus/GPa
    Poisson
    ratio
    thermal
    expansion/K−1
    thermal optic
    coefficient/K−1
    Si23296951531900.264.68×10−6
    Al2O33980761.5243790.277.8×10−61.15×10−5
    SiO222007531.4730.170.42×10−61.10×10−5
    下载: 导出CSV

    表  2  N2的物理性质

    Table  2.   Physical values of the N2

    density/(kg·m−3)specific heat capacity/ (J·K−1·kg−1)thermal conductivity/(W·m−1·K−1)dynamic viscosity/(μPa·s)refractive index
    1.250610430.02617.91.0002793
    下载: 导出CSV
  • [1] 苏毅. 高能激光系统中的物理问题[J]. 物理, 2005, 34(8):583-588. (Su Yi. Physics problems in high energy laser system[J]. Physics, 2005, 34(8): 583-588 doi: 10.3321/j.issn:0379-4148.2005.08.009
    [2] Huang Tingrui, Huang Wenfa, Wang Jiangfeng, et al. Thermal-induced wavefront aberration in sapphire-cooled Nd: glass slab[J]. Applied Physics B, 2016, 122: 182.
    [3] Sikocinski P, Novak O, Smrz M, et al. Time-resolved measurement of thermally induced aberrations in a cryogenically cooled Yb: YAG slab with a wavefront sensor[J]. Applied Physics B, 2016, 122: 73.
    [4] 孙毅, 高云国, 邵帅. 高功率激光热效应对合束系统的影响[J]. 光学 精密工程, 2015, 23(11):3097-3105. (Sun Yi, Gao Yunguo, Shao Shuai. Influence of high power laser thermal effect on beam combination system[J]. Optics and Precision Engineering, 2015, 23(11): 3097-3105 doi: 10.3788/OPE.20152311.3097
    [5] Li Linxin, Jin Yunxia, Kong Fanyu, et al. Beam modulation due to thermal deformation of grating in a spectral beam combining system[J]. Applied Optics, 2017, 56(19): 5511-5519. doi: 10.1364/AO.56.005511
    [6] 王汉斌, 杨依枫, 袁志军, 等. 光纤激光光谱合束及光栅热效应研究进展[J]. 强激光与粒子束, 2020, 32:121002. (Wang Hanbin, Yang Yifeng, Yuan Zhijun, et al. Research progress on fiber laser spectral beam combining system and grating thermal analysis[J]. High Power Laser and Particle Beams, 2020, 32: 121002 doi: 10.11884/HPLPB202032.200240
    [7] 金钢, 刘顺发, 李树民, 等. 激光热效应对光束控制系统发射光束质量的影响[J]. 中国激光, 2002, 29(10):895-899. (Jin Gang, Liu Shunfa, Li Shumin, et al. Laser thermal effects in beam control system on the emitted laser quality[J]. Chinese Journal of Lasers, 2002, 29(10): 895-899 doi: 10.3321/j.issn:0258-7025.2002.10.009
    [8] Peñano J, Sprangle P, Ting A, et al. Optical quality of high-power laser beams in lenses[J]. Journal of the Optical Society of America B, 2009, 26(3): 503-510. doi: 10.1364/JOSAB.26.000503
    [9] 孙峰, 程祖海, 张耀宁, 等. 在波长1.315 μm下的几种激光器窗口热效应比较研究[J]. 中国激光, 2004, 31(4):412-416. (Sun Feng, Cheng Zuhai, Zhang Yaoning, et al. Thermal distortions in calcium fluoride, potassium chloride and fused silica windows at 1.315 μm[J]. Chinese Journal of Lasers, 2004, 31(4): 412-416 doi: 10.3321/j.issn:0258-7025.2004.04.007
    [10] 饶鹏, 刘文广, 华卫红. 反射镜热畸变对高能激光系统输出光束质量的影响[J]. 光学与光电技术, 2009, 7(3):12-15. (Rao Peng, Liu Wenguang, Hua Weihong. Thermal distortion influence of reflector on output beam quality of HEL system[J]. Optics & Optoelectronic Technology, 2009, 7(3): 12-15 doi: 10.3969/j.issn.1672-3392.2009.03.004
    [11] 刘文广, 饶鹏, 华卫红. 非均匀激光辐照下硅镜热变形对光束传输特性的影响[J]. 强激光与粒子束, 2008, 20(10):1615-1619. (Liu Wenguang, Rao Peng, Hua Weihong. Effects of thermal distortion of Si mirror irradiated by non-uniformity laser intensity on laser propagation[J]. High Power Laser and Particle Beams, 2008, 20(10): 1615-1619
    [12] Sun Yi, Li Fu, Yang Wenqiang, et al. Thermal effects of optical antenna under the irradiation of laser[C]//Proceedings of SPIE 10463, AOPC 2017: Space Optics and Earth Imaging and Space Navigation. 2017: 104631F.
    [13] 柳建, 金钢, 王世庆, 等. 连续激光内通道传输的弱可压缩流模型[J]. 强激光与粒子束, 2006, 18(12):1983-1986. (Liu Jian, Jin Gang, Wang Shiqing, et al. Weakly compressible fluid model to study thermal effects on laser propagating in closed tube[J]. High Power Laser and Particle Beams, 2006, 18(12): 1983-1986
    [14] 孙运强, 习锋杰, 许晓军, 等. 内通道流场与光场能量耦合的数值模拟[J]. 中国激光, 2011, 38:0202013. (Sun Yunqiang, Xi Fengjie, Xu Xiaojun, et al. Model for the optical field and fluent field coupling effects[J]. Chinese Journal of Lasers, 2011, 38: 0202013 doi: 10.3788/CJL201138.0202013
    [15] 胡小川, 彭家琪, 张彬. 变形镜热形变及其对光束质量的影响分析[J]. 中国激光, 2015, 42:0102003. (Hu Xiaochuan, Peng Jiaqi, Zhang Bin. Thermal distortion of deformable mirror and its influence on beam quality[J]. Chinese Journal of Lasers, 2015, 42: 0102003 doi: 10.3788/CJL201542.0102003
    [16] 严宗达, 王洪礼. 热应力[M]. 北京: 高等教育出版社, 1993

    Yan Zongda, Wang Hongli. Heat stress[M]. Beijing: Higher Education Press, 1993
    [17] 安建祝, 李有宽, 杜祥琬. 激光窗口热透镜效应对光束质量的影响[J]. 强激光与粒子束, 2004, 16(4):429-433. (An Jianzhu, Li Youkuan, Du Xiangwan. Influence of laser window’s thermal lensing effect on beam quality[J]. High Power Laser and Particle Beams, 2004, 16(4): 429-433
    [18] 吴双, 贺也洹, 张彬. 不同夹持方式下不同高反膜系腔镜的热形变分析[J]. 激光与光电子学进展, 2014, 51:021402. (Wu Shuang, He Yehuan, Zhang Bin. Analysis of thermal distortion of resonator mirror with high reflective coatings in different clamping ways[J]. Laser & Optoelectronics Progress, 2014, 51: 021402
    [19] 张建云, 陈帆, 马骏, 等. 熔融石英基片热形变及其对光束质量的影响分析[J]. 激光技术, 2019, 43(3):374-379. (Zhang Jianyun, Chen Fan, Ma Jun, et al. Thermal deformation of fused silica substrates and its influence on beam quality[J]. Laser Technology, 2019, 43(3): 374-379 doi: 10.7510/jgjs.issn.1001-3806.2019.03.016
    [20] 贺敏波, 江厚满. 激光辐照下高反射镜热变形问题的尺度律[J]. 强激光与粒子束, 2012, 24(9):2043-2046. (He Minbo, Jiang Houman. Scaling law in thermal deformation of high reflecting mirror under laser irradiation[J]. High Power Laser and Particle Beams, 2012, 24(9): 2043-2046 doi: 10.3788/HPLPB20122409.2043
    [21] 贺敏波, 任伟艳, 张世强, 等. 长时间出光条件下反射镜的热变形对光束质量的影响[J]. 激光与光电子学进展, 2013, 50:122302. (He Minbo, Ren Weiyan, Zhang Shiqiang, et al. Influence of mirror thermal deformation on beam quality under laser long-time irradiation[J]. Laser & Optoelectronics Progress, 2013, 50: 122302
    [22] 周琼, 姜宗福, 习锋杰. 光学系统中白宝石分光镜的热变形像差分析[J]. 中国激光, 2012, 39:1002001. (Zhou Qiong, Jiang Zongfu, Xi Fengjie. Study of thermal deformations induced optical aberrations for Al2O3 mirror in an optical system[J]. Chinese Journal of Lasers, 2012, 39: 1002001 doi: 10.3788/CJL201239.1002001
    [23] 胡鹏, 张建柱. 激光系统中元件热效应时空特性分析[J]. 光学学报, 2020, 40:2014001. (Hu Peng, Zhang Jianzhu. Analysis of spatio-temporal characters of thermal effects of optical components in laser system[J]. Acta Optica Sinica, 2020, 40: 2014001 doi: 10.3788/AOS202040.2014001
    [24] 梅艳莹, 杨涛. 强光辐照下白宝石高反镜尺寸对热变形的影响[J]. 激光技术, 2014, 38(3):375-379. (Mei Yanying, Yang Tao. Effect of dimensions on thermal deformation of high reflectance sapphire mirrors under high power laser irradiation[J]. Laser Technology, 2014, 38(3): 375-379 doi: 10.7510/jgjs.issn.1001-3806.2014.03.020
    [25] 陈发良, 李有宽. 环形分布激光束引起光学窗口镜热变形理论分析[J]. 强激光与粒子束, 2003, 15(8):736-740. (Chen Faliang, Li Youkuan. Thermal deformation of optical windows induced by annularly-distributed laser beam[J]. High Power Laser and Particle Beams, 2003, 15(8): 736-740
    [26] Gavrielides A, Phillip P. Time-dependent thermal blooming in axial pipe flow[J]. Applied Optics, 1983, 22(21): 3359-3365. doi: 10.1364/AO.22.003359
    [27] 胡鹏, 安建祝, 张飞舟. 封闭水平管道中气体压强对激光传输的影响[J]. 中国激光, 2013, 40:0702005. (Hu Peng, An Jianzhu, Zhang Feizhou. Pressure effects on laser propagation in a closed horizontal tube[J]. Chinese Journal of Lasers, 2013, 40: 0702005 doi: 10.3788/CJL201340.0702005
    [28] 胡鹏, 苏华, 安建祝, 等. 封闭管道中热耦合效应对激光传输的影响[J]. 强激光与粒子束, 2013, 25(7):1651-1656. (Hu Peng, Su Hua, An Jianzhu, et al. Thermal coupling effects on laser propagation in closed tube[J]. High Power Laser and Particle Beams, 2013, 25(7): 1651-1656 doi: 10.3788/HPLPB20132507.1651
    [29] 胡小川, 贺也洹, 吴双, 等. 内通道轴向风速对强激光相位特性的影响[J]. 红外与激光工程, 2016, 45:0806003. (Hu Xiaochuan, He Yehuan, Wu Shuang, et al. Effect of axial wind speed in inner propagation channel on phase characteristics of high-power lasers[J]. Infrared and Laser Engineering, 2016, 45: 0806003 doi: 10.3788/IRLA201645.0806003
    [30] 柳建, 王世庆, 金钢, 等. 吹气抑制气体热效应时管道结构对光传输的影响[J]. 强激光与粒子束, 2007, 19(3):391-393. (Liu Jian, Wang Shiqing, Jin Gang, et al. Effect of tube structure on beam propagation when depressing thermal effect by blowing[J]. High Power Laser and Particle Beams, 2007, 19(3): 391-393
    [31] 孙运强, 习锋杰, 陈洪斌, 等. 内通道气帘的设计与分析[J]. 激光与光电子学进展, 2011, 48:051404. (Sun Yunqiang, Xi Fengjie, Chen Hongbin, et al. Design and analysis on gas curtain of beam path indoor[J]. Laser & Optoelectronics Progress, 2011, 48: 051404
    [32] An Jianzhu, Li Youkuan, Du Xiangwan. Thermal effects of a laser beam tube consisting of a window and nonflowing gas[J]. Optics Letters, 2004, 29(24): 2899-2901. doi: 10.1364/OL.29.002899
    [33] 谢晓钢, 张建柱, 岳玉芳, 等. 激光系统组件化仿真软件EasyLaser[J]. 强激光与粒子束, 2013, 25(10):2536-2540. (Xie Xiaogang, Zhang Jianzhu, Yue Yufang, et al. EasyLaser: component-based laser system simulation software[J]. High Power Laser and Particle Beams, 2013, 25(10): 2536-2540 doi: 10.3788/HPLPB20132510.2536
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  836
  • HTML全文浏览量:  271
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 修回日期:  2021-12-24
  • 网络出版日期:  2021-12-29
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回