留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光驱动爆炸与冲击效应

吴先前 黄晨光

吴先前, 黄晨光. 强激光驱动爆炸与冲击效应[J]. 强激光与粒子束, 2022, 34: 011003. doi: 10.11884/HPLPB202234.210326
引用本文: 吴先前, 黄晨光. 强激光驱动爆炸与冲击效应[J]. 强激光与粒子束, 2022, 34: 011003. doi: 10.11884/HPLPB202234.210326
Wu Xianqian, Huang Chenguang. Laser driven explosion and shock wave: a review[J]. High Power Laser and Particle Beams, 2022, 34: 011003. doi: 10.11884/HPLPB202234.210326
Citation: Wu Xianqian, Huang Chenguang. Laser driven explosion and shock wave: a review[J]. High Power Laser and Particle Beams, 2022, 34: 011003. doi: 10.11884/HPLPB202234.210326

强激光驱动爆炸与冲击效应

doi: 10.11884/HPLPB202234.210326
基金项目: 国家自然科学基金项目(11772347); 科学挑战专题(TZ2018001)
详细信息
    作者简介:

    吴先前, wuxianqian@imech.ac.cn

    通讯作者:

    黄晨光, huangcg@imech.ac.cn

  • 中图分类号: O38

Laser driven explosion and shock wave: a review

  • 摘要: 随着高功率密度激光技术的快速发展,强激光驱动的爆炸与冲击效应逐渐引起国内外学者的广泛关注。对强激光诱导爆炸与冲击效应研究进展进行了综述,包括强激光诱导爆炸载荷特征与相似律,强激光对材料表面冲击强化处理,强激光冲击诱导材料相变动力学行为,以及利用强激光驱动微弹道冲击等方面的研究进展,并指出了强激光诱导爆炸与冲击效应研究的发展趋势和未来需要解决的关键科学问题。
  • 图  1  强激光驱动爆炸与冲击作用原理示意图

    Figure  1.  Schematic of laser driven explosion and shock wave

    图  2  (a)强激光驱动爆炸与冲击效应耦合物理模型;(b)物理模型实验验证;(c)介质内部强激光诱导冲击波传播与衰减规律[19]

    Figure  2.  (a) One-dimensional coupling analytical model for laser driven explosion and shock wave. (b) Relationship between peak pressure and laser power density. (c) Laser-induced shock wave propagation and attenuation[19]

    图  3  (a)强激光驱动爆炸与冲击效应相似律分析方法;(b)约束层厚度对强激光冲击的饱和效应;(c)激光脉宽和(d)激光能量对表面残余压应力幅值与塑性区深度的影响规律[27]

    Figure  3.  (a) Parameters of laser, confined overlayer, metallic target. (b) Influence of thickness in confined overlayer on shock effect. (c) Influence of laser duration on shock effect. (d) Influence of laser power density on shock effect[27]

    图  4  纯镍试样截面SEM形貌[38]

    Figure  4.  Cross-sectional SEM morphologies of pure nickel[38]

    图  5  激光冲击过程中304不锈钢晶粒细化机制[49]

    Figure  5.  Schematic of grain refinement induced by multiple laser driven shock impacts in 304 stainless steel[49]

    图  6  深冷激光喷丸诱导的纳米孪晶在304不锈钢[59]

    Figure  6.  Deformation-induced nanotwins by cryogenic laser shock peening of 304 stainless steel[59]

    图  7  激光水下烧蚀非晶合金的在位观察结果。捕捉到高温物质的喷发,并伴随着空化气泡的扩张。底部时间轴表示烧蚀中各个物理过程的时间关系[62]

    Figure  7.  Ejection of the high-temperature matter with an evolving bubble after single-shot nanosecond pulse laser ablation of the metallic glass target in water. The sketch at the bottom of the figure shows the main stages during the pulse laser ablation[62]

    图  8  改进激光加载实验示意图[70]

    Figure  8.  Schematic of laser induced shock experiments[70]

    图  9  强激光驱动冲击压缩下STF的(a)波速与质点速度关系及(b)冲击波衰减与能量吸收特性[70]

    Figure  9.  (a) The average shock velocities along the thickness of the STF. (b) The stress attenuation and corresponding energy absorption in the STF[70]

    图  10  (a) 7.5~10.0 GPa、106~107 s−1加载条件下马氏体相变行为[75];(b) 3.9 ~ 4.5 GPa、106~107 s−1加载条件下的非晶化行为[78]

    Figure  10.  (a) The martensitic transformation of NiTi after LSP [75]. (b) Amorphization of NiTi surface after LSP[78].

    图  11  NiTi应变率与温度相关相图[79,81]

    Figure  11.  Phase diagram of the NiTi nanopillar at various temperatures and at various strain rates[79,81]

    图  12  (a)激光驱动高速飞片发射装置示意图; (b)高速摄影图片在飞片发射速度为540 m/s[83-84]

    Figure  12.  (a) Schematic illustration of LDF launch pad. (b) High-speed photography of a flyer plate lauched at 540 m/s[83-84]

    图  13  (a) Xiao等人改进的LIPIT装置。(b) LIPIT实验过程[91-94]

    Figure  13.  (a) Improved LIPIT setup designed by Xiao et al. (b) Impact process of LIPIT[91-94]

    图  14  (a)不同冲击速度下不同材料的SEA对比[89];(b) GR薄膜在冲击载荷作用下的失效模式[89]

    Figure  14.  (a) Specific energy absorption (SEA) value of different materials under different impact velocity[89]. (b) Failure model of GR film under impact[89]

    图  15  (a) 冲击速度与CNT薄膜比吸能的关系;(b) 纳米厚度的CNT薄膜的比吸能与其他材料的对比[95];(c) 比吸能随交联密度的变化[94];(d) 不同交联密度CNT薄膜的ΔEsEb变化历程[94];(e) 未添加交联和交联密度为20时CNT薄膜的穿孔形貌变化[94]

    Figure  15.  (a) Relationship between impact velocity and SEA of CNT film. (b) Comparison of SEA[95].(c) Relationship between SEA and crosslink density[94]. (d) Evolution of ΔEsEb of CNT film with different crosslink density[94]. (e) Penetration morphologies change of CNT film before and after adding crosslinks[94]

    图  16  Ni60Ta40非晶合金纳米薄膜的比吸能[67]

    Figure  16.  SEA value of Ni60Ta40 amorphous alloy[67]

    图  17  (a) PS薄膜比吸能与缠结度之间的关系[98];(b) PS薄膜与PC薄膜的失效形貌对比;(c) 沿不同方向冲击时块层状纳米复合材料的微观结构变化[100];(d) P(VDF-TrEE)薄膜的比吸能[101]

    Figure  17.  (a) Relationship between SEA of PS film and entanglement degree [98]. (b) Failure morphologies of PS film and PC film. (c) Micro-structure change of bulk lamellar nanocomposite under impact along different directions[100]. (d) SEA value of P(VDF-TrEE) thin film[101]

    图  18  (a)微颗粒碰撞铝金属靶板时的反弹与粘合过程;其中上下两行的多帧序列分别显示了铝颗粒在阈值速度以下(605 m/s)和以上(805 m/s)对铝靶板的影响[102]; (b)金属材料的动态硬度计算结果[104]。(c) 熔化驱动的不同颗粒/基体材料组合触发熔体驱动侵蚀的冲击速度图谱[105]

    Figure  18.  (a) In-situ observation of the re-bounding and bonding moment in microparticle impact. Multi-frame sequences at top and bottom showing the Al particle impacts on Al substrate below (605 m/s) and above (805 m/s) the critical velocity[102]. (b) Calculation results of dynamic hardness of metallic materials[104]. (c) Melt-driven erosion map. Impact velocity at which melt-driven erosion is triggered for different combinations of particle/substrate materials[105]

  • [1] 郑哲敏. 爆炸加工[M]. 2版. 北京: 国防工业出版社, 1981

    Zheng Zhemin. Explosion and processing[M]. 2nd ed. Beijing: National Defense Industry Press, 1981
    [2] 郑哲敏, 谈庆明. 爆炸复合界面波的形成机理[J]. 力学学报, 1989, 21(2):129-139. (Zheng Zhemin, Tan Qingming. Mechanism of wave formation at the interface in explosive welding[J]. Acta Mechanica Sinica, 1989, 21(2): 129-139
    [3] 孙承纬, 陆启生, 范正修, 等. 激光辐照效应[M]. 北京: 国防工业出版社, 2002

    Sun Chengwei, Lu Qisheng, Fan Zhengxiu, et al. Laser irradiation effect[M]. Beijing: National Defense Industry Press, 2002
    [4] 吴先前. 金属材料激光冲击强化机理的实验与理论研究[D]. 北京: 中国科学院大学, 2012

    Wu Xianqian. Experimental and theoretical studies on laser shock peening of metals[D]. Beijing: University of Chinese Academy of Sciences, 2012
    [5] Askar'yan G A, Moroz E M. Pressure on evaporation of matter in a radiation beam[J]. Soviet Journal of Experimental and Theoretical Physics, 1963, 16: 1638-1639.
    [6] Radziemski L J, Cremers D A. Lasers-induced plasmas and applications[M]. New York: Marcel Dekker Inc. , 1989.
    [7] Ready J F. Effects due to absorption of laser radiation[J]. Journal of Applied Physics, 1965, 36(2): 462-468. doi: 10.1063/1.1714012
    [8] White R M. Elastic wave generation by electron bombardment or electromagnetic wave absorption[J]. Journal of Applied Physics, 1963, 34(7): 2123-2124. doi: 10.1063/1.1729762
    [9] Fairand B P, Wilcox B A, Gallagher W J, et al. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics, 1972, 43(9): 3893-3895. doi: 10.1063/1.1661837
    [10] Sano Y, Mukai N, Okazaki K, et al. Residual stress improvement in metal surface by underwater laser irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 121(1/4): 432-436.
    [11] Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784. doi: 10.1063/1.346783
    [12] Hong Xin, Wang Shengbo, Guo Dahao, et al. Confining medium and absorptive overlay: their effects on a laser-induced shock wave[J]. Optics and Lasers in Engineering, 1998, 29(6): 447-455. doi: 10.1016/S0143-8166(98)80012-2
    [13] Fabbro R, Peyre P, Berthe L, et al. Physics and applications of laser-shock processing[J]. Journal of Laser Applications, 1998, 10(6): 265-279. doi: 10.2351/1.521861
    [14] Peyre P, Fabbro R. Laser shock processing: a review of the physics and applications[J]. Optical and Quantum Electronics, 1995, 27(12): 1213-1229.
    [15] Zhang Wenwu, Yao Y L, Noyan I C. Microscale laser shock peening of thin films, part 1: experiment, modeling and simulation[J]. Journal of Manufacturing Science and Engineering, 2004, 126(1): 10-17. doi: 10.1115/1.1645878
    [16] Colvin J D, Ault E R, King W E, et al. Computational model for a low-temperature laser-plasma driver for shock-processing of metals and comparison to experimental data[J]. Physics of Plasmas, 2003, 10(7): 2940-2947. doi: 10.1063/1.1581285
    [17] Sollier A, Berthe L, Peyre P, et al. Laser-matter interaction in laser shock processing[C]//Proceedings of SPIE 4831, First International Symposium on High-Power Laser Macroprocessing. 2003: 463-467.
    [18] Wu Benxin, Shin Y C. A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments[J]. Journal of Applied Physics, 2005, 97: 113517. doi: 10.1063/1.1915537
    [19] Wu Xianqian, Duan Zhuping, Song Hongwei, et al. Shock pressure induced by glass-confined laser shock peening: experiments, modeling and simulation[J]. Journal of Applied Physics, 2011, 110: 053112. doi: 10.1063/1.3633266
    [20] 吴先前, 段祝平, 黄晨光, 等. 激光冲击强化过程中蒸气等离子体压力计算的耦合模型[J]. 爆炸与冲击, 2012, 32(1):1-7. (Wu Xianqian, Duan Zhuping, Huang Chenguang, et al. A coupling model for computing plasma pressure induced by laser shock peening[J]. Explosion and Shock Waves, 2012, 32(1): 1-7 doi: 10.3969/j.issn.1001-1455.2012.01.001
    [21] Fournier J, Ballard P, Merrien P, et al. Mechanical effects induced by shock waves generated by high energy laser pulses[J]. Journal de Physique III, 1991, 1(9): 1467-1480. doi: 10.1051/jp3:1991204
    [22] Peyre P, Fabbro R, Merrien P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour[J]. Materials Science and Engineering:A, 1996, 210(1/2): 102-113.
    [23] Shepard M J, Smith P R, Amer M S. Introduction of compressive residual stresses in Ti-6Al-4V simulated airfoils via laser shock processing[J]. Journal of Materials Engineering and Performance, 2001, 10(6): 670-678. doi: 10.1361/105994901770344539
    [24] Masse J E, Barreau G. Laser generation of stress waves in metal[J]. Surface and Coatings Technology, 1995, 70(2/3): 231-234.
    [25] Hu Y X, Yao Z Q, Wang F, et al. Study on residual stress of laser shock processing based on numerical simulation and orthogonal experimental design[J]. Surface Engineering, 2007, 23(6): 470-478. doi: 10.1179/174329407X247208
    [26] Peyre P, Berthe L, Scherpereel X, et al. Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour[J]. Journal of Materials Science, 1998, 33(6): 1421-1429. doi: 10.1023/A:1004331205389
    [27] Wu Xianqian, Tan Qingming, Huang Chenguang. Geometrical scaling law for laser shock processing[J]. Journal of Applied Physics, 2013, 114: 043105. doi: 10.1063/1.4816487
    [28] 谈庆明. 量纲分析[M]. 北京: 中国科学技术大学出版社, 2005

    Tan Qingming. Dimensional analysis[M]. Beijing: University of Science and Technology of China Press, 2005
    [29] King A, Steuwer A, Woodward C, et al. Effects of fatigue and fretting on residual stresses introduced by laser shock peening[J]. Materials Science and Engineering:A, 2006, 435/436: 12-18. doi: 10.1016/j.msea.2006.07.020
    [30] 邹世坤, 巩水利, 郭恩明, 等 发动机整体叶盘的激光冲击强化技术[J]. 中国激光, 2011, 38: 0601009

    Zou Shikun, Gong Shuili, Guo Enming, et al. Laser peening of turbine engine integrally blade rotor[J]. Chinese Journal of Lasers, 2011, 38: 0601009
    [31] 王健, 邹世坤, 谭永生. 激光冲击处理技术在发动机上的应用[J]. 应用激光, 2005, 25(1):32-34. (Wang Jian, Zou Shikun, Tan Yongsheng. Application of laser shock processing on turbine engines[J]. Applied Laser, 2005, 25(1): 32-34 doi: 10.3969/j.issn.1000-372X.2005.01.010
    [32] Bartsch T M. High Cycle Fatigue (HCF) science and technology program[R]. Technical Report, AD-A408071, 2002.
    [33] Ruschau J J, John R, Thompson S R, et al. Fatigue crack nucleation and growth rate behavior of laser shock peened titanium[J]. International Journal of Fatigue, 1999, 21 Suppl 1: S199-S209.
    [34] Sokol D W, Clauer A H, Dulaney J L, et al. Applications of laser peening to titanium alloys[C]//Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies. 2005: PTuB4.
    [35] 刘志东, 杨怡生, 余承业. 激光冲击强化改善金属疲劳特性的研究[J]. 航空制造技术, 1992(5):8-12. (Liu Zhidong, Yang Yisheng, Yu Chengye. Using laser shock processing to improve metal fatigue property[J]. Aeronautical Manufacturing Technology, 1992(5): 8-12
    [36] 高建民. 我国首台激光冲击强化装置问世[J]. 高技术通讯, 1996(6):32. (Gao Jianmin. Chinese first laser shock peening equipment is published[J]. High Technology Letters, 1996(6): 32
    [37] 吴嘉俊, 赵吉宾, 乔红超, 等. 激光冲击强化技术的应用现状与发展[J]. 光电工程, 2018, 45:170690. (Wu Jiajun, Zhao Jibin, Qiao Hongchao, et al. The application status and development of laser shock processing[J]. Opto-Electronic Engineering, 2018, 45: 170690
    [38] Chen Lan, Ren Xudong, Zhou Wangfan, et al. Evolution of microstructure and grain refinement mechanism of pure nickel induced by laser shock peening[J]. Materials Science and Engineering:A, 2018, 728: 20-29. doi: 10.1016/j.msea.2018.04.105
    [39] Hua Yinqun, Bai Yuchuan, Ye Yunxia, et al. Hot corrosion behavior of TC11 titanium alloy treated by laser shock processing[J]. Applied Surface Science, 2013, 283: 775-780. doi: 10.1016/j.apsusc.2013.07.017
    [40] Zhao Xiangfan, He Weifeng, Zang Shunlai, et al. Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts[J]. Surface and Coatings Technology, 2014, 253: 68-75. doi: 10.1016/j.surfcoat.2014.05.015
    [41] Correa C, Peral D, Porro J A, et al. Random-type scanning patterns in laser shock peening without absorbing coating in 2024-T351 Al alloy: a solution to reduce residual stress anisotropy[J]. Optics & Laser Technology, 2015, 73: 179-187.
    [42] Dai Fengze, Zhou Jianzhong, Lu Jinzhong, et al. A technique to decrease surface roughness in overlapping laser shock peening[J]. Applied Surface Science, 2016, 370: 501-507. doi: 10.1016/j.apsusc.2016.02.138
    [43] Zhang X C, Zhang Y K, Lu J Z, et al. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening[J]. Materials Science and Engineering:A, 2010, 527(15): 3411-3415. doi: 10.1016/j.msea.2010.01.076
    [44] Correa C, de Lara L, Díaz M, et al. Effect of advancing direction on fatigue life of 316L stainless steel specimens treated by double-sided laser shock peening[J]. International Journal of Fatigue, 2015, 79: 1-9. doi: 10.1016/j.ijfatigue.2015.04.018
    [45] 曹子文, 邹世坤, 刘方军, 等. 激光冲击处理1Cr11Ni2W2MoV不锈钢[J]. 中国激光, 2008, 35(2):316-320. (Cao Ziwen, Zou Shikun, Liu Fangjun, et al. Laser shock processing on 1Cr11Ni2W2MoV martensite steel[J]. Chinese Journal of Lasers, 2008, 35(2): 316-320 doi: 10.3321/j.issn:0258-7025.2008.02.033
    [46] 王华明, 李晓轩, 孙锡军, 等. 激光冲击处理不锈钢及镍基合金后表面力学性能的研究[J]. 中国激光, 2000, 27(8):756-760. (Wang Huaming, Li Xiaoxuan, Sun Xijun, et al. Study of surface mechanical properties of laser shock processed austenitic steel and Ni-based Superalloy[J]. Chinese Journal of Lasers, 2000, 27(8): 756-760 doi: 10.3321/j.issn:0258-7025.2000.08.019
    [47] Trdan U, Grum J. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods[J]. Corrosion Science, 2012, 59: 324-333. doi: 10.1016/j.corsci.2012.03.019
    [48] Lu J Z, Luo K Y, Yang D K, et al. Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel[J]. Corrosion Science, 2012, 60: 145-152. doi: 10.1016/j.corsci.2012.03.044
    [49] Ge Maozhong, Xiang Jianyun, Yang L. Effect of laser shock peening on the stress corrosion cracking of AZ31B magnesium alloy in a simulated body fluid[J]. Surface and Coatings Technology, 2017, 310: 157-165. doi: 10.1016/j.surfcoat.2016.12.093
    [50] Sánchez-Santana U, Rubio-González C, Gomez-Rosas G, et al. Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing[J]. Wear, 2006, 260(7/8): 847-854.
    [51] Lim H, Kim P, Jeong H, et al. Enhancement of abrasion and corrosion resistance of duplex stainless steel by laser shock peening[J]. Journal of Materials Processing Technology, 2012, 212(6): 1347-1354. doi: 10.1016/j.jmatprotec.2012.01.023
    [52] Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994. doi: 10.1016/j.actamat.2010.03.026
    [53] Luo Sihai, Nie Xiangfan, Zhou Liucheng, et al. Thermal stability of surface nanostructure produced by laser shock peening in a Ni-based superalloy[J]. Surface and Coatings Technology, 2017, 311: 337-343. doi: 10.1016/j.surfcoat.2017.01.031
    [54] Ye Chang, Suslov S, Kim B J, et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Materialia, 2011, 59(3): 1014-1025. doi: 10.1016/j.actamat.2010.10.032
    [55] Tani G, Orazi L, Fortunato A, et al. Warm laser shock peening: new developments and process optimization[J]. CIRP Annals, 2011, 60(1): 219-222. doi: 10.1016/j.cirp.2011.03.115
    [56] Ye Chang, Liao Yiliang, Suslov S, et al. Ultrahigh dense and gradient nano-precipitates generated by warm laser shock peening for combination of high strength and ductility[J]. Materials Science and Engineering: A, 2014, 609: 195-203. doi: 10.1016/j.msea.2014.05.003
    [57] Zhou J Z, Meng X K, Huang S, et al. Effects of warm laser peening at elevated temperature on the low-cycle fatigue behavior of Ti6Al4V alloy[J]. Materials Science and Engineering:A, 2015, 643: 86-95. doi: 10.1016/j.msea.2015.07.017
    [58] 柳沅汛, 王曦, 吴先前, 等. 激光冲击处理304不锈钢表面的形貌特征及其机理分析[J]. 中国激光, 2013, 40:0103004. (Liu Yuanxun, Wang Xi, Wu Xianqian, et al. Surface morphology and deformation mechanism of 304 stainless steel treated by laser shock peening[J]. Chinese Journal of Lasers, 2013, 40: 0103004 doi: 10.3788/CJL201340.0103004
    [59] Ye Chang, Suslov S, Lin Dong, et al. Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties[J]. Philosophical Magazine, 2012, 92(11): 1369-1389. doi: 10.1080/14786435.2011.645899
    [60] Fu Jie, Zhu Yunhu, Zheng Chao, et al. Evaluate the effect of laser shock peening on plasticity of Zr-based bulk metallic glass[J]. Optics & Laser Technology, 2015, 73: 94-100.
    [61] Liu Y, Jiang M Q, Yang G W, et al. Surface rippling on bulk metallic glass under nanosecond pulse laser ablation[J]. Applied Physics Letters, 2011, 99: 191902. doi: 10.1063/1.3656700
    [62] Song X, Xiao K L, Wu X Q, et al. Nanoparticles produced by nanosecond pulse laser ablation of a metallic glass in water[J]. Journal of Non-Crystalline Solids, 2019, 517: 119-126. doi: 10.1016/j.jnoncrysol.2019.05.009
    [63] Wei Yanpeng, Xu Guangyue, Zhang Kun, et al. Anomalous shear band characteristics and extra-deep shock-affected zone in Zr-based bulk metallic glass treated with nanosecond laser peening[J]. Scientific Reports, 2017, 7: 43948. doi: 10.1038/srep43948
    [64] Wang Fei, Zhang Chenfei, Lu Yongfeng, et al. Laser shock processing of polycrystalline alumina ceramics[J]. Journal of the American Ceramic Society, 2017, 100(3): 911-919. doi: 10.1111/jace.14630
    [65] Shukla P, Nath S, Wang Guanjun, et al. Surface property modifications of silicon carbide ceramic following laser shock peening[J]. Journal of the European Ceramic Society, 2017, 37(9): 3027-3038. doi: 10.1016/j.jeurceramsoc.2017.03.005
    [66] Jiang Weifeng, Gong Xinglong, Xuan Shouhu, et al. Stress pulse attenuation in shear thickening fluid[J]. Applied Physics Letters, 2013, 102: 101901. doi: 10.1063/1.4795303
    [67] Waitukaitis S R, Jaeger H M. Impact-activated solidification of dense suspensions via dynamic jamming fronts[J]. Nature, 2012, 487(7406): 205-209. doi: 10.1038/nature11187
    [68] Barnes H A. Shear-thickening ("Dilatancy") in suspensions of nonaggregating solid particles dispersed in Newtonian liquids[J]. Journal of Rheology, 1989, 33(2): 329-366. doi: 10.1122/1.550017
    [69] Ding Jie, Tian Tongfei, Meng Qing, et al. Smart multifunctional fluids for lithium ion batteries: enhanced rate performance and intrinsic mechanical protection[J]. Scientific Reports, 2013, 3: 2485. doi: 10.1038/srep02485
    [70] Wu Xianqian, Zhong Fachun, Yin Qiuyun, et al. Dynamic response of shear thickening fluid under laser induced shock[J]. Applied Physics Letters, 2015, 106: 071903. doi: 10.1063/1.4913423
    [71] Wu Xianqian, Yin Qiuyun, Huang Chenguang. Experimental study on pressure, stress state, and temperature-dependent dynamic behavior of shear thickening fluid subjected to laser induced shock[J]. Journal of Applied Physics, 2015, 118: 173102. doi: 10.1063/1.4934857
    [72] Duerig T, Melton K, Stockel D, et al. Engineering aspects of shape memory alloys[M]. London: Butterworth-Heinemann, 1990.
    [73] Liao Yiliang, Ye Chang, Lin Dong, et al. Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening[J]. Journal of Applied Physics, 2012, 112: 033515. doi: 10.1063/1.4742997
    [74] Wang Xi, Xia Weiguang, Wu Xianqian, et al. Microstructure and mechanical properties of an austenite NiTi shape memory alloy treated with laser induced shock[J]. Materials Science and Engineering:A, 2013, 578: 1-5. doi: 10.1016/j.msea.2013.04.058
    [75] Wang Xi, Xia Weiguang, Wu Xianqian, et al. In-situ investigation of dynamic deformation in NiTi shape memory alloys under laser induced shock[J]. Mechanics of Materials, 2017, 114: 69-75. doi: 10.1016/j.mechmat.2017.06.009
    [76] 夏伟光, 吴先前, 魏延鹏, 等. 激光冲击强化对NiTi形状记忆合金力学性质的影响[J]. 中国激光, 2013, 40:1103002. (Xia Weiguang, Wu Xianqian, Wei Yanpeng, et al. Mechanical properties of NiTi shape memory alloy processed by laser shock peening[J]. Chinese Journal of Lasers, 2013, 40: 1103002 doi: 10.3788/CJL201340.1103002
    [77] Nemat-Nasser S, Choi J Y, Guo Weiguo, et al. Very high strain-rate response of a NiTi shape-memory alloy[J]. Mechanics of Materials, 2005, 37(2/3): 287-298.
    [78] Xu Yunhua, Chen Yumei, Zhu Jinhua. Wear behavior and nano-structure of surface layers of Hadfield steel under impact loading[J]. Progress in Natural Science, 2001, 11(6): 447-453.
    [79] Yin Qiuyun, Wu Xianqian, Huang Chenguang, et al. Atomistic study of temperature and strain rate-dependent phase transformation behaviour of NiTi shape memory alloy under uniaxial compression[J]. Philosophical Magazine, 2015, 95(23): 2491-2512. doi: 10.1080/14786435.2015.1065018
    [80] Frost H J, Ashby M F. Deformation-mechanism maps: the plasticity and creep of metals and ceramics[M]. Oxford: Pergamon Press, 1982.
    [81] Yin Qiuyun, Wu Xianqian, Huang Chenguang. Atomistic study on shock behaviour of NiTi shape memory alloy[J]. Philosophical Magazine, 2017, 97(16): 1311-1333. doi: 10.1080/14786435.2017.1294769
    [82] Zhao Xinghai, Zhao Xiang, Shan Guangcun, et al. Fiber-coupled laser-driven flyer plates system[J]. Review of Scientific Instruments, 2011, 82: 043904. doi: 10.1063/1.3581220
    [83] Veysset D, Lee J H, Hassani M, et al. High-velocity micro-projectile impact testing[J]. Applied Physics Review, 2021, 8: 011319.
    [84] Dean S W, De Lucia F C, Gottfried J L. Indirect ignition of energetic materials with laser-driven flyer plates[J]. Applied Optics, 2017, 56(3): B134-B141. doi: 10.1364/AO.56.00B134
    [85] Curtis A D, Banishev A A, Shaw W L, et al. Laser-driven flyer plates for shock compression science: launch and target impact probed by photon Doppler velocimetry[J]. Review of Scientific Instruments, 2014, 85: 043908. doi: 10.1063/1.4871361
    [86] Watson S, Field J E. Measurement of the ablated thickness of films in the launch of laser-driven flyer plates[J]. Journal of Physics D:Applied Physics, 2000, 33(2): 170-174. doi: 10.1088/0022-3727/33/2/312
    [87] Brown K E, Shaw W L, Zheng Xianxu, et al. Simplified laser-driven flyer plates for shock compression science[J]. Review of Scientific Instruments, 2012, 83: 103901. doi: 10.1063/1.4754717
    [88] Veysset D, Hsieh A J, Kooi S, et al. Dynamics of supersonic microparticle impact on elastomers revealed by real-time multi-frame imaging[J]. Scientific Reports, 2016, 6: 25577. doi: 10.1038/srep25577
    [89] Lee J H, Loya P E, Lou Jun, et al. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration[J]. Science, 2014, 346(6213): 1092-1096. doi: 10.1126/science.1258544
    [90] Xie Wanting, Alizadeh-Dehkharghani A, Chen Qiyong, et al. Dynamics and extreme plasticity of metallic microparticles in supersonic collisions[J]. Scientific Reports, 2017, 7: 5073. doi: 10.1038/s41598-017-05104-7
    [91] Xiao Kailu, Wu Xianqian, Song Xuan, et al. Study on performance degradation and damage modes of thin-film photovoltaic cell subjected to particle impact[J]. Scientific Reports, 2021, 11: 782. doi: 10.1038/s41598-020-80879-w
    [92] Dong J L, Song X, Wang Z J, et al. Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration[J]. Extreme Mechanics Letters, 2021, 44: 101258. doi: 10.1016/j.eml.2021.101258
    [93] Xiao Kailu, Wu Xianqian, Wu Chenwu, et al. Residual stress analysis of thin film photovoltaic cells subjected to massive micro-particle impact[J]. RSC Advances, 2020, 10(23): 13470-13479. doi: 10.1039/C9RA10082B
    [94] Xiao Kailu, Lei Xudong, Chen Yuyu, et al. Extraordinary impact resistance of carbon nanotube film with crosslinks under micro-ballistic impact[J]. Carbon, 2021, 175: 478-489. doi: 10.1016/j.carbon.2021.01.009
    [95] Hyon J, Lawal O, Thevamaran R, et al. Extreme energy dissipation via material evolution in carbon nanotube mats[J]. Advanced Science, 2021, 8: 2003142. doi: 10.1002/advs.202003142
    [96] Wang Chao, Xie Bo, Liu Yilun, et al. Mechanotunable microstructures of carbon nanotube networks[J]. ACS Macro Letters, 2012, 1(10): 1176-1179. doi: 10.1021/mz300422f
    [97] Satti A, Perret A, McCarthy J E, et al. Covalent crosslinking of single-walled carbon nanotubes with poly(allylamine) to produce mechanically robust composites[J]. Journal of Materials Chemistry, 2010, 20(37): 7941-7943. doi: 10.1039/c0jm01515f
    [98] Xie Wanting, Lee J H. Dynamics of entangled networks in ultrafast perforation of polystyrene nanomembranes[J]. Macromolecules, 2020, 53(5): 1701-1705. doi: 10.1021/acs.macromol.9b02265
    [99] Chan E P, Xie Wanting, Orski S V, et al. Entanglement density-dependent energy absorption of polycarbonate films via supersonic fracture[J]. ACS Macro Letters, 2019, 8(7): 806-811. doi: 10.1021/acsmacrolett.9b00264
    [100] Lee J H, Veysset D, Singer J P, et al. High strain rate deformation of layered nanocomposites[J]. Nature Communications, 2012, 3: 1164. doi: 10.1038/ncomms2166
    [101] Cai Jizhe, Thevamaran R. Superior energy dissipation by ultrathin semicrystalline polymer films under supersonic microprojectile impacts[J]. Nano Letters, 2020, 20(8): 5632-5638. doi: 10.1021/acs.nanolett.0c00066
    [102] Hassani-Gangaraj M, Veysset D, Nelson K A, et al. In-situ observations of single micro-particle impact bonding[J]. Scripta Materialia, 2018, 145: 9-13. doi: 10.1016/j.scriptamat.2017.09.042
    [103] Hassani-Gangaraj M, Veysset D, Champagne V K, et al. Adiabatic shear instability is not necessary for adhesion in cold spray[J]. Acta Materialia, 2018, 158: 430-439. doi: 10.1016/j.actamat.2018.07.065
    [104] Hassani M, Veysset D, Nelson K A, et al. Material hardness at strain rates beyond 106 s−1 via high velocity microparticle impact indentation[J]. Scripta Materialia, 2020, 177: 198-202. doi: 10.1016/j.scriptamat.2019.10.032
    [105] Hassani-Gangaraj M, Veysset D, Nelson K A, et al. Melt-driven erosion in microparticle impact[J]. Nature Communications, 2018, 9: 5077. doi: 10.1038/s41467-018-07509-y
  • 加载中
图(18)
计量
  • 文章访问数:  1561
  • HTML全文浏览量:  601
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 修回日期:  2021-11-01
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回