留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学元件的激光损伤问题

赵元安 邵建达 刘晓凤 李大伟

赵元安, 邵建达, 刘晓凤, 等. 光学元件的激光损伤问题[J]. 强激光与粒子束, 2022, 34: 011004. doi: 10.11884/HPLPB202234.210331
引用本文: 赵元安, 邵建达, 刘晓凤, 等. 光学元件的激光损伤问题[J]. 强激光与粒子束, 2022, 34: 011004. doi: 10.11884/HPLPB202234.210331
Zhao Yuanan, Shao Jianda, Liu Xiaofeng, et al. Tracking and understanding laser damage events in optics[J]. High Power Laser and Particle Beams, 2022, 34: 011004. doi: 10.11884/HPLPB202234.210331
Citation: Zhao Yuanan, Shao Jianda, Liu Xiaofeng, et al. Tracking and understanding laser damage events in optics[J]. High Power Laser and Particle Beams, 2022, 34: 011004. doi: 10.11884/HPLPB202234.210331

光学元件的激光损伤问题

doi: 10.11884/HPLPB202234.210331
详细信息
    作者简介:

    赵元安,yazhao@siom.ac.cn

  • 中图分类号: O436

Tracking and understanding laser damage events in optics

  • 摘要: 光学元件是各类激光系统不可或缺的光学功能实现部件,其性能决定了激光系统的输出能力和光束质量。光学元件的激光损伤问题从激光发明起就一直伴随着激光技术的发展,随着激光新技术的发展和激光新应用的牵引,激光的波段、脉冲宽度以及重复频率等参数不断拓宽,使得激光损伤问题更加复杂,但万变不离其宗,激光损伤问题的核心是光学元件或光学材料对激光的吸收机制问题。从激光与光学材料相互作用的基本原理出发,以惯性约束聚变(ICF)激光驱动器应用的典型光学材料和光学元件为研究对象,回顾了针对光学元件的激光损伤问题开展的科研工作,总结了在此期间形成的关键技术和里程碑进展,同时也对依然困扰该领域的几类光学元件存在的问题瓶颈以及进一步研究发展趋势进行了展望。
  • 图  1  节瘤缺陷的剖面结构[19]

    Figure  1.  Cross sections of nodules[19]

    图  2  节瘤缺陷诱导的电场、温度场、热应力分布

    Figure  2.  Distributions of electric field, temperature and thermal stress induced by the nodule

    图  3  节瘤缺陷的典型损伤形貌

    Figure  3.  Typical damage morphologies of nodules

    图  4  79.8 J/cm2能流扫描下节瘤缺陷的抗激光损伤特性[19]

    Figure  4.  Laser damage characteristics of nodular defects under the fluence of 79.8 J/cm2[19]

    图  5  纳观尺度激光损伤前驱体诱导的典型损伤形貌

    Figure  5.  Typical damage morpholgies induced by nanoscale laser damage precursors

    图  6  连续过滤技术用于提升KDP晶体抗激光损伤能力[27]

    Figure  6.  Laser damage resistance enhancement of KDP crystals by continuous filtration techniques [27]

    图  7  不加连续过滤(NCF)、0.1 μm滤孔一级过滤(SCF)、0.1 μm和0.03 μm滤孔二级过滤(TCF)样品的损伤几率[28]

    Figure  7.  Laser damage probability curves for KDP samples grown with no filter (NCF), only 0.1 μm filter (SCF) and two levels of filter (0.1 μm and 0.03 μm) (TCF) in continuous filtration unit[28]

    图  8  KDP晶体中损伤前驱体的阈值分布及尺度分布[28]

    Figure  8.  Laser induced damage thresholds (LIDTs) and sizes of laser damage precursors in KDP crystals[28]

    图  9  HfO2/SiO2多层膜的损伤形貌(a)俯视,(b)(c)切面图[31]

    Figure  9.  Damage morpholgies of HfO2/SiO2 multilayer films. (a) top view, (b)(c) section view. [31]

    图  10  半径为10 nm 的缺陷在0.8 J/cm2(1064 nm,30 ps)激光辐照下的膜层温度分布[31]

    Figure  10.  Temperature simulation of the defect with the radius of 10 nm irradiated by the fluence of 0.8 J/cm2(1064 nm, 30 ps)[31]

    图  11  温升模拟与损伤形态的对比[31]

    Figure  11.  Comparison of the temperature simulation and damage morphology[31]

    图  12  损伤点不同位置的温度[31]

    Figure  12.  Temperatures of different locations in the damage area[31]

    图  13  小光斑扫描激光预处理流程示意图

    Figure  13.  Schematic diagram of small-beam raster-scan laser conditioning

    图  14  大口径光学元件激光预处理平台[35]

    Figure  14.  Laser conditioning platforms for large optics[35]

    图  15  预处理后大口径介质膜的激光损伤阈值(TM:传输反射镜;ZJ:肘镜;PL:偏振片)[35]

    Figure  15.  LIDTs of large-aperture dielectric films after laser conditioning (TM: transport mirror;ZJ: elbow mirror; PL: polarizer[35]

    图  16  预处理后介质膜的表面状态[35]

    Figure  16.  Surface state of the conditioned dielectric films[35]

    图  17  等离子体烧蚀损伤对光束质量及元件PSD2的影响[35]

    Figure  17.  Influences of plasma scalds on the beam quality and PSD2[35]

    图  18  DKDP晶体的亚纳秒激光预处理的抗激光损伤性能提升效果

    Figure  18.  Laser damage resistance enhancement of KDP crystals by sub-nanosecond laser conditioning

    表  1  不同滤孔生长的 KDP晶体中损伤前驱体的信息[28]

    Table  1.   Information of the laser damage precursors for KDP crystals grown with differently sized filter pores[28]

    sampleρ0/mm−3T0 /(J/cm2)ΔT/(J/cm2)
    NCF3.7524.810.5
    SCF2.5933.314.6
    TCF0.4281.441.3
    下载: 导出CSV
  • [1] McClung F J, Hellwarth R W. Giant optical pulsations from ruby[J]. Journal of Applied Physics, 1962, 33(3): 828-829. doi: 10.1063/1.1777174
    [2] Hopper R W, Uhlmann D R. Mechanism of inclusion damage in laser glass[J]. Journal of Applied Physics, 1970, 41(10): 4023-4037. doi: 10.1063/1.1658407
    [3] Carr C W, Bude J D, Demange P. Laser-supported solid-state absorption fronts in silica[J]. Physical Review B, 2010, 82: 184304. doi: 10.1103/PhysRevB.82.184304
    [4] Bloembergen N. Laser-induced electric breakdown in solids[J]. IEEE Journal of Quantum Electronics, 1974, 10(3): 375-386. doi: 10.1109/JQE.1974.1068132
    [5] Epifanov A S, Manenkov A A, Prokhorov A M. Theory of avalanche ionization induced in transparent dielectrics by an electromagnetic field[J]. Journal of Experimental and Theoretical Physics, 1976, 43(2): 377-382.
    [6] Schaffer C B, Brodeur A, Mazur E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses[J]. Measurement Science and Technology, 2001, 12(11): 1784-1794. doi: 10.1088/0957-0233/12/11/305
    [7] Deng Hongxiang, Guo Wenli, Gao Huanhuan, et al. A numerical approach for femtosecond laser-induced photoionization in solids and its application[J]. Journal of Optics, 2019, 21: 075501. doi: 10.1088/2040-8986/ab2357
    [8] Jing Xufeng, Tian Ying, Zhang Junchao, et al. Modeling validity of femtosecond laser breakdown in wide bandgap dielectrics[J]. Applied Surface Science, 2012, 258(10): 4741-4749. doi: 10.1016/j.apsusc.2012.01.070
    [9] Dijon J, Poulingue M, Hue J. Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection[C]//Proceedings of SPIE 3578 Laser-Induced Damage in Optical Materials. 1999: 387-397.
    [10] Liu Xiaofeng, Li Dawei, Zhao Yuan’an, et al. Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings[J]. Applied Surface Science, 2010, 256(12): 3783-3788. doi: 10.1016/j.apsusc.2010.01.026
    [11] Papernov S. Mechanisms of near-ultraviolet, nanosecond-pulse–laser damage in HfO2/SiO2-based multilayer coatings[J]. Chinese Optics Letters, 2013, 11: S10703.
    [12] Li Cheng, Zhao Yuan’an, Cui Yun, et al. Comparison of 355-nm nanosecond and 1064-nm picosecond laser-induced damage in high-reflective coatings[J]. Optical Engineering, 2018, 57: 121908.
    [13] Borden M R, Folta J A, Stolz C J, et al. Improved method for laser damage testing coated optics[C]//Proceedings of SPIE 5991, Laser-Induced Damage in Optical Materials. 2005: 59912A.
    [14] Taniguchi J, Lebarron N E, Howe J, et al. Functional damage thresholds of hafnia/silica coating designs for the NIF laser[C]//Proceedings of SPIE 4347, Laser-Induced Damage in Optical Materials. 2001: 109-117.
    [15] Stolz C J. Status of NIF mirror technologies for completion of the NIF facility[C]//Proceedings of SPIE 7101, Advances in Optical Thin Films III. 2008: 710115.
    [16] Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF Laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
    [17] Suratwala T I, Miller P E, Bude J D, et al. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces[J]. Journal of the American Ceramic Society, 2011, 94(2): 416-428. doi: 10.1111/j.1551-2916.2010.04112.x
    [18] Bude J, Miller P, Baxamusa S, et al. High fluence laser damage precursors and their mitigation in fused silica[J]. Optics Express, 2014, 22(5): 5839-5851. doi: 10.1364/OE.22.005839
    [19] Liu Xiaofeng, Li Dawei, Zhao Yuan’an, et al. Further investigation of the characteristics of nodular defects[J]. Applied Optics, 2010, 49(10): 1774-1779. doi: 10.1364/AO.49.001774
    [20] Shan Yongguang, He Hongbo, Wei Chaoyang, et al. Geometrical characteristics and damage morphology of nodules grown from artificial seeds in multilayer coating[J]. Applied Optics, 2010, 49(22): 4290-4295. doi: 10.1364/AO.49.004290
    [21] 潘顺民, 卫耀伟, 安晨辉, 等. 45°高反膜中节瘤缺陷的电场增强效应及损伤特性[J]. 强激光与粒子束, 2020, 32:071006. (Pan Shunmin, Wei Yaowei, An Chenhui, et al. Electric field enhancement effect and damage characteristics of nodular defect in 45° high-reflection coating[J]. High Power Laser and Particle Beams, 2020, 32: 071006
    [22] Shan Yongguang, He Hongbo, Wei Chaoyang, et al. Thermomechanical analysis of nodule damage in HfO2/SiO2 multilayer coatings[J]. Chinese Optics Letters, 2011, 9: 103101. doi: 10.3788/COL201109.103101
    [23] Stolz C J. Engineering high-damage-threshold NIF polarizers and mirrors [R]. ICF Quarterly Report, 1999, 9(2): 151-162.
    [24] Demange P P, Negres R A, Radousky H B, et al. Differentiation of defect populations responsible for bulk laser-induced damage in potassium dihydrogen phosphate crystals[J]. Optical Engineering, 2010, 45: 104205.
    [25] Demos S G, Demange P, Negres R A, et al. Investigation of the electronic and physical properties of defect structures responsible for laser-induced damage in DKDP crystals[J]. Optics Express, 2010, 18(13): 13788-13804. doi: 10.1364/OE.18.013788
    [26] Reyné S, Duchateau G, Natoli J Y, et al. Laser-induced damage of KDP crystals by 1ω nanosecond pulses: influence of crystal orientation[J]. Optics Express, 2009, 17(24): 21652-21665. doi: 10.1364/OE.17.021652
    [27] Baisden P A, Atherton L J, Hawley R A, et al. Large optics for the National Ignition Facility[J]. Fusion Science and Technology, 2016, 69(1): 295-351. doi: 10.13182/FST15-143
    [28] Wang Yueliang, Zhao Yuan’an, Xie Xiaoyi, et al. Laser damage dependence on the size and concentration of precursor defects in KDP crystals: view through differently sized filter pores[J]. Optics Letter, 2016, 41(7): 1534-1537. doi: 10.1364/OL.41.001534
    [29] Demange P, Negres R A, Carr C W, et al. Laser-induced defect reactions governing damage initiation in DKDP crystals[J]. Optics Express, 2006, 14(12): 5313-5328. doi: 10.1364/OE.14.005313
    [30] Duchateau G. Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses[J]. Optics Express, 2009, 17(13): 10434-10456. doi: 10.1364/OE.17.010434
    [31] 李成. 纳观尺度缺陷诱导多层介质膜激光损伤动力学研究[D].上海: 中国科学院上海光学精密机械研究所, 2020: 79-87

    Li Cheng. Dynamics of nanoscale defects induced laser damage of multilayer dielectric coatings[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2020: 79-87
    [32] De Yoreo J J, Burnham A K, Whitman P K. Developing KH2PO4 and KD2PO4 crystals for the world's most power laser[J]. International Materials Reviews, 2002, 47(3): 113-152. doi: 10.1179/095066001225001085
    [33] Sheehan L M, Kozlowski M R, Tench R J. Full-aperture laser conditioning of multilayer mirrors and polarizers[C]//Proceedings of SPIE 2633, Solid State Lasers for Application to Inertial Confinement Fusion (ICF). 1995: 457-463.
    [34] Hunt J T, Manes K R, Renard P A. Hot images from obscurations[J]. Applied Optics, 1993, 32(30): 5973-5982. doi: 10.1364/AO.32.005973
    [35] 赵元安, 胡国行, 刘晓凤, 等. 激光预处理技术及其应用[J]. 光学 精密工程, 2016, 24(12):2938-2947. (Zhao Yuan’an, Hu Guohang, Liu Xiaofeng, et al. Laser conditioning technology and its applications[J]. Optics and Precision Engineering, 2016, 24(12): 2938-2947 doi: 10.3788/OPE.20162412.2938
    [36] Sheehan L M, Schwartz S, Battersby C L, et al. Automated damage test facilities for materials development and production optic quality assurance at Lawrence Livermore National Laboratory[C]//Proceedings of SPIE 3578, Laser-Induced Damage in Optical Materials. 1999: 302-313.
    [37] Liao Z M, Spaeth M L, Manes K, et al. Predicting laser-induced bulk damage and conditioning for deuterated potassium dihydrogen phosphate crystals using an absorption distribution model[J]. Optics Letters, 2010, 35(15): 2538-2540. doi: 10.1364/OL.35.002538
    [38] Peng Xiaocong, Zhao Yuan’an, Wang Yueliang, et al. Variation of the band structure in DKDP crystal excited by intense sub-picosecond laser pulses[J]. High Power Laser Science and Engineering, 2018, 6: 03000e41.
    [39] 王岳亮. I类KDP和II类DKDP晶体激光损伤机理及激光预处理特性研究[D]. 上海: 中国科学院上海光学精密机械研究所, 2017: 53-66

    Wang Yueliang. Laser damage mechanisms and laser conditioning properties in I-type KDP and II-type DKDP crystals[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2017: 53-66
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  1317
  • HTML全文浏览量:  609
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2021-10-26
  • 网络出版日期:  2021-10-21
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回