留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1064 nm激光不同辐照时间对小鼠皮肤热损伤的实验与理论研究

周巡 马琼 刘智搏 康宏向

周巡, 马琼, 刘智搏, 等. 1064 nm激光不同辐照时间对小鼠皮肤热损伤的实验与理论研究[J]. 强激光与粒子束, 2022, 34: 011012. doi: 10.11884/HPLPB202234.210338
引用本文: 周巡, 马琼, 刘智搏, 等. 1064 nm激光不同辐照时间对小鼠皮肤热损伤的实验与理论研究[J]. 强激光与粒子束, 2022, 34: 011012. doi: 10.11884/HPLPB202234.210338
Zhou Xun, Ma Qiong, Liu Zhibo, et al. 1064 nm laser induced thermal injure in mice skin with different laser duration[J]. High Power Laser and Particle Beams, 2022, 34: 011012. doi: 10.11884/HPLPB202234.210338
Citation: Zhou Xun, Ma Qiong, Liu Zhibo, et al. 1064 nm laser induced thermal injure in mice skin with different laser duration[J]. High Power Laser and Particle Beams, 2022, 34: 011012. doi: 10.11884/HPLPB202234.210338

1064 nm激光不同辐照时间对小鼠皮肤热损伤的实验与理论研究

doi: 10.11884/HPLPB202234.210338
基金项目: 后勤科研重大专项(AWS16J002)
详细信息
    作者简介:

    周 巡,zx66patrol@163.com

    通讯作者:

    康宏向,khx007@163.com

  • 中图分类号: Q631

1064 nm laser induced thermal injure in mice skin with different laser duration

  • 摘要: 通过实验和理论分析的方法研究1064 nm激光不同辐照时间对小鼠皮肤的热损伤规律。利用皮肤镜图像和光学相干断层图像评估小鼠皮肤组织热损伤程度,利用Arrhenius热损伤方程计算热损伤参数,建立激光诱导皮肤组织热损伤模型,并与实验结果进行对比。结果表明,在靶功率密度为30 W/mm2的1064 nm激光辐照下,0~100 ms辐照时间内,小鼠皮肤组织损伤可恢复;150~280 ms辐照时间内,小鼠皮肤组织出现水肿现象和热凝固损伤;280~550 ms辐照时间内,小鼠皮肤表皮层出现汽化现象,损伤斑周围出现焦痂,真皮层发生变性;660 ms辐照时间以上,小鼠皮肤表皮层和真皮层出现汽化现象,伤口渗出组织液,皮下组织发生变性。理论分析与实验结果一致,建立的热损伤模型能够验证小鼠皮肤热损伤程度。
  • 图  1  1064 nm激光辐照活体小鼠皮肤的光路

    Figure  1.  Light path diagram of 1064 nm laser radiation on living mice skin

    图  2  1064 nm激光辐照后小鼠皮肤损伤斑的皮肤镜图像

    Figure  2.  Dermoscope images of injure in mice skin at different duration of 1064 nm laser irradiation(a: 60 ms, b: 100 ms, c: 150 ms, d: 210 ms, e: 280 ms, f: 360 ms, g: 550 ms, h: 660 ms, i: 780 ms. Scale bar of dermoscope images: 500 μm)

    图  3  损伤斑面积随激光辐照时间的变化情况

    Figure  3.  Relationship between laser duration and area of damage spot

    图  4  1064 nm激光辐照后小鼠皮肤损伤斑的皮肤镜图像

    Figure  4.  OCT images of injure in mice skin at different duration of 1064 nm laser irradiation (a: 60 ms, b: 100 ms, c: 150 ms, d: 210 ms, e: 280 ms, f: 360 ms, g: 550 ms, h: 660 ms, i: 780 ms. Scale bar of dermoscope images: 500 μm)

    图  5  损伤深度随激光辐照时间的变化情况

    Figure  5.  Relationship between laser duration and damage depth

    图  6  温度-时间的拟合曲线图

    Figure  6.  Temperature-time fitting curve

    表  1  1064 nm激光诱导生物皮肤组织的热损伤分级

    Table  1.   Classification of 1064 nm laser induced thermal injure in biological skin tissue

    laser duration/msdamageappearance
    0~100 first-degree injure White coagulation spots appear on the skin epidermis, and the epidermis is flat
    150~210 second-degree injure Blisters appear on the skin epidermis, with raised white coagulation spots
    280~550 third-degree injure The epidermis of the skin is slightly vaporized, the dermis is degenerated, and shallow pit-like light red blood spots
    660~$ \infty $ fourth-degree injure The skin epidermis and superficial dermis are vaporized, accompanied by exudation of tissue fluid, eschars appear on the edges of the wound, and deep pit-like crimson blood spots
    下载: 导出CSV

    表  2  热损伤程度和激光辐照时间关系表

    Table  2.   Relationship between laser duration and degree of thermal injure

    laser duration/mΩ
    603.51×10−10
    1003.86×10−19
    1504.39
    210208.73
    28019607.46
    3604.62×1013
    5506.52×1014
    6602.12×1015
    7805.59×1023
    下载: 导出CSV
  • [1] 李文景. 基于半导体激光种子的1064nm光纤激光器研究[D]. 长春: 长春理工大学, 2013: 5-7

    Li Wenjing. Study of a 1064nm fiber laser based on semiconductor seed laser[D]. Changchun: Changchun University of Science and Technology, 2013: 5-7
    [2] Hu Xinhua, Fang Qiyin, Cariveau M J, et al. Mechanism study of porcine skin ablation by nanosecond laser pulses at 1064, 532, 266, and 213 nm[J]. IEEE Journal of Quantum Electronics, 2001, 37(3): 322-328. doi: 10.1109/3.910440
    [3] 周国瑜, 沈玲悦, 田克斌, 等. 长脉冲可调脉宽Gentle YAG 1064nm激光治疗颌面部血管瘤113例效果评估[J]. 上海口腔医学, 2006, 15(3):250-253. (Zhou Guoyu, Shen Lingyue, Tian Kebin, et al. Treatment of 113 oral and maxillofacial hemangiomas with long pulsed turnable 1064nm Gentle YAG laser[J]. Shanghai Journal of Stomatology, 2006, 15(3): 250-253 doi: 10.3969/j.issn.1006-7248.2006.03.002
    [4] Chalermsuwiwattanakan N, Rojhirunsakool S, Kamanamool N, et al. The comparative study of efficacy between 1064-nm long-pulsed Nd: YAG laser and 595-nm pulsed dye laser for the treatment of acne vulgaris[J]. Journal of Cosmetic Dermatology, 2021, 20(7): 2108-2115. doi: 10.1111/jocd.13832
    [5] 韦洁, 黎冻, 周翔, 等. Q开关Nd: YAG 1064nm激光联合口服氨甲环酸片治疗黄褐斑疗效观察[J]. 中国美容医学, 2013, 22(9):965-969. (Wei Jie, Li Dong, Zhou Xiang, et al. Clinical efficacy of using Q-switch Nd: YAG 1064nm laser combined with ranexamic acid for the treatment of melasma[J]. Chinese Journal of Aesthetic Medicine, 2013, 22(9): 965-969 doi: 10.3969/j.issn.1008-6455.2013.09.024
    [6] Zhang Mengli, Huang Yuqing, Wu Qiuju, et al. Comparison of 1064-nm and dual-wavelength (532/1064-nm) picosecond-domain Nd: YAG lasers in the treatment of facial photoaging: a randomized controlled split-face study[J]. Lasers in Surgery and Medicine, 2021, 53(9): 1158-1165. doi: 10.1002/lsm.23404
    [7] Kim J Y, Jung H J, Kim D S, et al. The effect of 1320 nm Nd: YAG laser and long-pulsed 1064 nm Nd: YAG laser irradiation on hairless mouse skin[J]. Korean Journal of Dermatology, 2004, 42(4): 385-391.
    [8] 和晓琳, 李杨, 罗雯, 等. 长脉宽1064nm Nd: YAG激光在皮肤科的应用[J]. 皮肤病与性病, 2020, 42(6):817-820. (He Xiaolin, Li Yang, Luo Wen, et al. Application of long pulse width 1064nm Nd: YAG laser in dermatology[J]. Journal of Dermatology and Venereology, 2020, 42(6): 817-820 doi: 10.3969/j.issn.1002-1310.2020.06.015
    [9] Won K H, Lee S H, Lee M H, et al. A prospective, split-face, double-blinded, randomized study of the efficacy and safety of a fractional 1064-nm Q-switched Nd: YAG laser for photoaging-associated mottled pigmentation in Asian skin[J]. Journal of Cosmetic and Laser Therapy, 2016, 18(7): 381-386. doi: 10.1080/14764172.2016.1191645
    [10] Graham S J, Bronskill M J, Henkelman R M. Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle[J]. Magnetic Resonance in Medicine, 1998, 39(2): 198-203. doi: 10.1002/mrm.1910390206
    [11] Fan Yingwei, Ma Qiong, Liang Jie, et al. Quantitative and qualitative evaluation of recovery process of a 1064 nm laser on laser-induced skin injury: in vivo experimental research[J]. Laser Physics Letters, 2019, 16: 115604. doi: 10.1088/1612-202X/ab4f62
    [12] Fan Yingwei, Luo Site, Huo Li, et al. An imaging analysis and reconstruction method for multiple-micro-electro-mechanical system mirrors-based off-centre scanning optical coherence tomography probe[J]. Laser Physics Letters, 2020, 17: 075601. doi: 10.1088/1612-202X/ab8f31
    [13] Li Zhifang, Wu Shulian, Cai Shoudong, et al. Segment and feature extraction of optical coherence tomography image of mouse's skin in vivo using mathematical morphology[C]//Proceedings of the 2009 2nd International Conference on Biomedical Engineering and Informatics. 2009: 1-4.
    [14] Kagan R J, Peck M D, Ahrenholz D H, et al. Surgical management of the burn wound and use of skin substitutes: an expert panel white paper[J]. Journal of Burn Care & Research, 2013, 34(2): e60-e79.
    [15] Moritz A R, Henriques F C. Studies of thermal injury: II. the relative importance of time and surface temperature in the causation of cutaneous burns[J]. The American Journal of Pathology, 1947, 23(5): 695-720.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1064
  • HTML全文浏览量:  355
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-01
  • 修回日期:  2021-12-24
  • 网络出版日期:  2021-12-29
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回