留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时空调制型干涉成像光谱仪的强光干扰效应仿真研究

孟凡欣 邢中阳 许中杰 程湘爱

孟凡欣, 邢中阳, 许中杰, 等. 时空调制型干涉成像光谱仪的强光干扰效应仿真研究[J]. 强激光与粒子束, 2022, 34: 011010. doi: 10.11884/HPLPB202234.210342
引用本文: 孟凡欣, 邢中阳, 许中杰, 等. 时空调制型干涉成像光谱仪的强光干扰效应仿真研究[J]. 强激光与粒子束, 2022, 34: 011010. doi: 10.11884/HPLPB202234.210342
Meng Fanxin, Xing Zhongyang, Xu Zhongjie, et al. Simulation study of strong light interference effect in temporally and spatially modulated Fourier transform imaging spectrometer[J]. High Power Laser and Particle Beams, 2022, 34: 011010. doi: 10.11884/HPLPB202234.210342
Citation: Meng Fanxin, Xing Zhongyang, Xu Zhongjie, et al. Simulation study of strong light interference effect in temporally and spatially modulated Fourier transform imaging spectrometer[J]. High Power Laser and Particle Beams, 2022, 34: 011010. doi: 10.11884/HPLPB202234.210342

时空调制型干涉成像光谱仪的强光干扰效应仿真研究

doi: 10.11884/HPLPB202234.210342
详细信息
    作者简介:

    孟凡欣,1429868773@qq.com

    通讯作者:

    程湘爱,1874620361@qq.com

  • 中图分类号: TN249

Simulation study of strong light interference effect in temporally and spatially modulated Fourier transform imaging spectrometer

  • 摘要: 干涉成像光谱技术是利用光的干涉原理获取目标光谱信息的一种成像技术。为研究其在强光下的干扰效果和机理,以大孔径静态成像光谱仪为典型对象,开展了相关仿真实验研究。以实际地物的图像和光谱信息为对象,仿真生成了原始干涉成像图案,并模拟830 nm单波长激光和超连续谱激光两种干扰源,分别研究不同辐照强度下的典型干扰效果,分析时假设光谱角大于30°时原始光谱信息丢失。基于本文的仿真模型,得到的相关结果表明,在830 nm的单波长激光干扰情况下,当干扰与目标成像峰值之比大于0.2∶1时原始光谱信息无法正确复原(光谱角大于30°),但模拟加入830 nm滤光片后,干扰效果被有效滤除。在超连续谱激光干扰情况下,不考虑饱和阈值时光谱角数值最终稳定在21°;考虑探测器饱和阈值为目标成像强度峰值3倍时,干扰与目标成像峰值之比大于2.1∶1时,原始光谱信息便无法分辨。该研究可能为同类型光谱仪的激光辐照效应和损伤机理的后续研究,以及光谱成像系统的激光防护和性能优化提供参考。
  • 图  1  LASIS的成像原理等效示意图

    Figure  1.  Equivalent diagram of large aperture static interference imaging spectrometer (LASIS) imaging principle

    图  2  LASIS于探测器上的成像过程

    Figure  2.  Imaging process of LASIS on the detector

    图  3  仿真地物信息

    Figure  3.  Simulation feature information

    图  4  仿真激光干扰信息

    Figure  4.  Simulation of laser jamming information

    图  5  仿真成像结果

    Figure  5.  Simulation imaging results

    图  6  无激光干扰时复原光谱与原始光谱对比图

    Figure  6.  Comparison of restored spectrum and original spectrum when there is no laser jamming

    图  7  不同激光干扰强度下复原光谱强度归一化分布图

    Figure  7.  Normalized intensity distribution of restored spectrum under different intensity of 830 nm laser jamming

    图  8  经过滤光片后的入射光谱

    Figure  8.  Incident spectrum after the filter

    图  9  加入滤波片后复原光谱与原始光谱对比

    Figure  9.  Comparison of the restored spectrum and the original spectrum after adding the filter

    图  10  不同干扰强度下复原光谱归一化分布图

    Figure  10.  Normalized intensity distribution of restored spectrum under different intensity of supercontinuous laser jamming

    图  11  设置饱和阈值后不同干扰强度下复原结果

    Figure  11.  Recovery results under different laser jamming intensity after setting the saturation threshold

    图  12  光谱角随干扰强度变化图

    Figure  12.  Relationship between spectral angle and laser jamming

    图  13  达到饱和阈值后干涉图

    Figure  13.  Interferograms after reaching the saturation threshold

    图  14  未饱和情况下光谱角取值随干涉成像峰值强度比值的变化图

    Figure  14.  Variation of spectral angle with the ratio of interference peak intensity under unsaturated condition

  • [1] 尚博. 高光谱干涉成像重构技术研究[D]. 南京: 南京理工大学, 2008

    Shang Bo. Research on reconstruction technology of hyperspectral interference imaging[D]. Nanjing: Nanjing University of Science and Technology, 2008
    [2] 崔代军, 庞其昌, 马骥, 等. 湿度对西洋参品质影响的快速无损检测[J]. 激光与光电子学进展, 2011, 48:093001. (Cui Daijun, Pang Qichang, Ma Ji, et al. Rapid and nondestructive detection of quality of Panax quinquefolium effected by humidity[J]. Laser & Optoelectronics Progress, 2011, 48: 093001
    [3] 赵风财, 肖广兵, 张涌. 基于高光谱成像的隧道油污监测系统设计[J]. 土木建筑工程信息技术, 2021, 13(1):46-50. (Zhao Fengcai, Xiao Guangbing, Zhang Yong. Design of tunnel oil pollution monitoring system based on hyperspectral imaging[J]. Journal of Information Technology in Civil Engineering and Architecture, 2021, 13(1): 46-50
    [4] Pham T H, Bevilacqua F, Spott T, et al. Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging[J]. Applied Optics, 2000, 39(34): 6487-6497. doi: 10.1364/AO.39.006487
    [5] 张瑜, 刘秉琦, 闫宗群, 等. 目标自辐射与干扰目标反射光谱的氧气吸收特性分析[J]. 强激光与粒子束, 2015, 27:081003. (Zhang Yu, Liu Bingqi, Yan Zongqun, et al. Oxygen absorption factors of target radiation and interference targets reflection spectra[J]. High Power Laser and Particle Beams, 2015, 27: 081003 doi: 10.11884/HPLPB201527.081003
    [6] Hamazaki T, Kaneko Y, Kuze A, et al. Fourier transform spectrometer for Greenhouse Gases Observing Satellite (GOSAT)[C]//Proceedings of SPIE 5659, Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing. 2005: 5659.
    [7] 江澄, 陶东兴, 何红艳. 大气环境红外甚高光谱分辨率探测仪数字建模与仿真[J]. 航天返回与遥感, 2018, 39(3):94-103. (Jiang Cheng, Tao Dongxing, He Hongyan. Digital modeling and simulation of AIUS[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(3): 94-103 doi: 10.3969/j.issn.1009-8518.2018.03.011
    [8] 相里斌, 王忠厚, 刘学斌, 等. “环境与灾害监测预报小卫星”高光谱成像仪[J]. 遥感技术与应用, 2009, 24(3):257-262. (Xiang Libin, Wang Zhonghou, Liu Xuebin, et al. Hyperspectral imager of the environment and disaster monitoring small satellite[J]. Remote Sensing Technology and Application, 2009, 24(3): 257-262 doi: 10.11873/j.issn.1004-0323.2009.3.257
    [9] Yang Qinghua. Design study of a compact ultra-wide-angle high-spatial-resolution high-spectral-resolution snapshot imaging spectrometer[J]. Optics Express, 2021, 29(2): 2893-2908. doi: 10.1364/OE.415484
    [10] Xie Yunqiang, Liu Chunyu, Liu Shuai, et al. Snapshot imaging spectrometer based on pixel-level filter array (PFA)[J]. Sensors, 2021, 21: 2289. doi: 10.3390/s21072289
    [11] Zhou Shiyao, Wang Yueming. A broadband spherical prism imaging spectrometer based on a single integrated module[J]. Optical and Quantum Electronics, 2021, 53: 289. doi: 10.1007/s11082-021-02930-y
    [12] 樊星皓, 刘春雨, 金光, 等. 轻小型高分辨率星载高光谱成像光谱仪[J]. 光学 精密工程, 2021, 29(3):463-473. (Fan Xinghao, Liu Chunyu, Jin Guang, et al. Small and high-resolution spaceborne hyperspectral imaging spectrometer[J]. Optics and Precision Engineering, 2021, 29(3): 463-473 doi: 10.37188/OPE.20212903.0463
    [13] Liu Xingwei, Zhou Jinsong, Wei Lidong, et al. Optical design of Schwarzschild imaging spectrometer with freeform surfaces[J]. Optics Communications, 2021, 480: 126495. doi: 10.1016/j.optcom.2020.126495
    [14] 赵美红. 消像差凸面全息光栅成像光谱系统建模与一体化设计[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021

    Zhao Meihong. Modeling and integrated design of imaging spectrometers with aberration-correction convex holographic gratings[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2021
    [15] 赵美红, 王新宇, 姜岩秀, 等. 变间距凸面光栅成像光谱系统的消像散设计[J]. 光学 精密工程, 2020, 28(10):2103-2111. (Zhao Meihong, Wang Xinyu, Jiang Yanxiu, et al. Anastigmatic design of imaging spectrometer with varied line-space convex grating[J]. Optics and Precision Engineering, 2020, 28(10): 2103-2111 doi: 10.37188/OPE.20202810.2103
    [16] 相里斌, 吕群波, 才啟胜, 等. Fourier变换成像光谱技术[J]. 中国科学:信息科学, 2020, 50(10):1462-1474. (Xiang Libin, Lü Qunbo, Cai Qisheng, et al. Fourier transform imaging spectroscopy[J]. SCIENTIA SINICA Informationis, 2020, 50(10): 1462-1474 doi: 10.1360/SSI-2020-0150
    [17] Otten III L J, Sellar R G, Rafert B. MightySat II. 1 Fourier-transform hyperspectral imager payload performance[C]//Proceedings of SPIE 2583, Advanced and Next-Generation Satellites. 1995: 2583.
    [18] Connes J. Research on formation and transformation of Fourier[J]. Journal of Optics, 1961, 40: 45-265.
    [19] Mertz L. Auxiliary computation for Fourier spectrometry[J]. Infrared Physics, 1967, 7(1): 17-23. doi: 10.1016/0020-0891(67)90026-7
    [20] Forman M L, Steel W H, Vanasse G A. Correction of asymmetric interferograms obtained in Fourier spectroscopy[J]. Journal of the Optical Society of America, 1966, 56(1): 59-63. doi: 10.1364/JOSA.56.000059
    [21] 相里斌. Fourier变换光谱学理论研究[D]. 西安: 中国科学院西安光学精密机械研究所, 1995

    Xiang Libin. Theoretical research on Fourier transform spectroscopy[D]. Xi'an: Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 1995
    [22] Saarinen P E. The spectral line narrowing problem and a computer program based on the gulf tuning method[J]. Applied Spectroscopy, 1998, 52(12): 1569-1582. doi: 10.1366/0003702981943077
    [23] 邵铭, 程相正, 康华超, 等. 激光对星载相机的干扰能力研究[J]. 激光与红外, 2020, 50(10):1253-1257. (Shao Ming, Cheng Xiangzheng, Kang Huachao, et al. Research on the interference ability of laser to satellite-borne camera[J]. Laser & Infrared, 2020, 50(10): 1253-1257 doi: 10.3969/j.issn.1001-5078.2020.10.017
    [24] 于晨曦. 强光对可见光CCD摄像系统成像过程的干扰研究[J]. 数字通信世界, 2020(1):174-175. (Yu Chenxi. Research on the interference of strong light on the imaging process of visible light CCD camera system[J]. Digital Communication World, 2020(1): 174-175 doi: 10.3969/J.ISSN.1672-7274.2020.01.133
    [25] 江天, 程湘爱. 连续激光对3通道CCD相机的饱和干扰效应[J]. 强激光与粒子束, 2010, 22(11):2571-2574. (Jiang Tian, Cheng Xiang’ai. Saturation interference to three-channel CCD camera by CW laser[J]. High Power Laser and Particle Beams, 2010, 22(11): 2571-2574 doi: 10.3788/HPLPB20102211.2571
    [26] 郭少锋, 程湘爱, 傅喜泉, 等. 高重复频率飞秒激光对面阵CCD的干扰和破坏[J]. 强激光与粒子束, 2007, 19(11):1783-1786. (Guo Shaofeng, Cheng Xiang’ai, Fu Xiquan, et al. Failure of array CCD irradiated by high-repetitive femto-second laser[J]. High Power Laser and Particle Beams, 2007, 19(11): 1783-1786
    [27] 刘长安, 陈金宝, 马金龙, 等. 红外激光对可见光CCD成像系统的干扰[J]. 强激光与粒子束, 2010, 22(8):1727-1730. (Liu Chang’an, Chen Jinbao, Ma Jinlong, et al. Jamming of visible light array CCD imaging system by infrared laser[J]. High Power Laser and Particle Beams, 2010, 22(8): 1727-1730 doi: 10.3788/HPLPB20102208.1727
    [28] 娄小程, 李晓英, 牛春晖, 等. 白光辐照多光谱CCD的干扰效应研究[J]. 激光技术, 2021, 45(6):703-708. (Lou Xiaocheng, Li Xiaoying, Niu Chunhui, et al. Study on the interference effect of white light irradiation multispectral CCD[J]. Laser Technology, 2021, 45(6): 703-708 doi: 10.7510/jgjs.issn.1001-3806.2021.06.005
    [29] 袁艳. 成像光谱理论与技术研究[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2005

    Yuan Yan. Research on theory and technology of imaging spectroscopy[D]. Xi’an: University of Chinese Academy of Sciences (Xi’an Institute of Optics and Precision Mechanics), 2005
    [30] 赵春晖, 田明华, 李佳伟. 光谱相似性度量方法研究进展[J]. 哈尔滨工程大学学报, 2017, 38(8):1179-1189. (Zhao Chunhui, Tian Minghua, Li Jiawei. Research progress on spectral similarity metrics[J]. Journal of Harbin Engineering University, 2017, 38(8): 1179-1189
  • 加载中
图(14)
计量
  • 文章访问数:  669
  • HTML全文浏览量:  178
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-04
  • 修回日期:  2021-12-17
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回