留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京大学DC-SRF-II注入器光阴极驱动激光系统

冯立文 王天一 贾豪彦 刘中琦 徐航 黄森林 刘克新

冯立文, 王天一, 贾豪彦, 等. 北京大学DC-SRF-II注入器光阴极驱动激光系统[J]. 强激光与粒子束, 2022, 34: 104016. doi: 10.11884/HPLPB202234.210343
引用本文: 冯立文, 王天一, 贾豪彦, 等. 北京大学DC-SRF-II注入器光阴极驱动激光系统[J]. 强激光与粒子束, 2022, 34: 104016. doi: 10.11884/HPLPB202234.210343
Feng Liwen, Wang Tianyi, Jia Haoyan, et al. Peking University’s DC-SRF-II photoinjector drive laser system[J]. High Power Laser and Particle Beams, 2022, 34: 104016. doi: 10.11884/HPLPB202234.210343
Citation: Feng Liwen, Wang Tianyi, Jia Haoyan, et al. Peking University’s DC-SRF-II photoinjector drive laser system[J]. High Power Laser and Particle Beams, 2022, 34: 104016. doi: 10.11884/HPLPB202234.210343

北京大学DC-SRF-II注入器光阴极驱动激光系统

doi: 10.11884/HPLPB202234.210343
基金项目: 国家重点研发计划项目(2017YFA0701000)
详细信息
    作者简介:

    冯立文,lwfeng@pku.edu.cn

  • 中图分类号: TN248.1

Peking University’s DC-SRF-II photoinjector drive laser system

  • 摘要: 为满足北京大学新一代超导注入器DC-SRF-II注入器的需求,设计了新的光阴极驱动激光系统。系统采用模块化的布局,可以工作在从单脉冲到81.25 MHz连续波模式,绿光输出功率1.41 W @ 1 MHz。系统实现了激光的纵向和横向整形,纵向整形后的激光脉冲为平顶分布,脉宽约为18 ps,横向则为截断高斯分布。实验结果显示,输出激光的RMS功率波动为1.8%,指向抖动小于1 μrad。
  • 图  1  北京大学DC-SRF注入器双碱光阴极驱动激光系统

    Figure  1.  Peking University’s DC-SRF injector photocathode drive laser system

    ① seed source, ② amplification system, ③ frequency doubling system, ④ longitudinal shaping system, ⑤ cross-correlation measurement system, ⑥ transverse shaping system, ⑦ laser transmission system

    图  2  DC-SRF驱动激光系统倍频与纵向整形系统光路示意图

    Figure  2.  Schematic diagram of frequency doubling and longitudinal shaping system

    图  3  互相关光路示意图

    Figure  3.  Schematic diagram of cross-correlation measurement

    图  4  利用互相关测量系统测得的激光脉冲形状

    Figure  4.  Laser pulse shape measured by cross-correlation measurement system

    图  5  DC-SRF-II 注入器驱动激光横向整形与传输系统

    Figure  5.  DC-SRF-II laser transverse shaping and transmission system

    图  6  (a)横向整形前光斑分布; (b)经过横向整形和传输后虚阴极处光斑分布

    Figure  6.  (a) Laser distribution before transverse shaping; (b) Laser distribution at the virtual cathode after transverse shaping and transmission

    图  7  虚阴极处光斑中心位置抖动

    Figure  7.  The spot center position jitter at the virtual cathode

    图  8  7小时激光功率稳定性测量

    Figure  8.  Seven hour laser power stability measurement

    表  1  放大器的输出参数表

    Table  1.   DC-SRF-II laser amplifier parameters

    output power21 W @ 10 MHz
    20.5 W @ 81.25 MHz
    2.2 W @ 1 MHz
    spectral width< 3 nm, @ 1037 nm
    pulse energy2 µJ @ 10 MHz
    pulse width1.5 ps @ 10 MHz & 1 MHz
    4 ps @ 81.25 MHz
    M2<1.3
    下载: 导出CSV
  • [1] Stephan F, Krasilnikov M. High brightness photo injectors for brilliant light sources[M]//Jaeschke E, Khan S, Schneider J, et al. Synchrotron light sources and free-electron lasers: Accelerator physics, instrumentation and science applications. Cham: Springer, 2020: 603-646.
    [2] Sheehy B. ERL R&D: laser and laser light transport[R]. BNL-90921-2010-IR, 2010.
    [3] Li S, Alverson S, Bohler D, et al. Ultraviolet laser transverse profile shaping for improving X-ray free electron laser performance[J]. Physical Review Accelerators and Beams, 2017, 20: 080704. doi: 10.1103/PhysRevAccelBeams.20.080704
    [4] Zhang Shukui, Hardy D, Neil G, et al. Characterization and performance of a high-power solid-state laser for a high-current photo-cathode injector[C]//Proceedings of the 27th International Free Electron Laser Conference. 2005: 351-354.
    [5] Ito I, Kawasaki T, Nakamura N, et al. Development of an YB-doped fiber laser system for an ERL photocathode gun[C]//Proceedings of IPAC10. 2010: 2141-2143.
    [6] Akemoto M, Arakawa D, Asaoka S, et al. Construction and commissioning of the compact energy-recovery linac at KEK[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 877: 197-219.
    [7] Zhao Zhi, Dunham B M, Wise F W. Generation of 167 W infrared and 124 W green power from a 1.3-GHz, 1-ps rod fiber amplifier[J]. Optics Express, 2014, 22(21): 25065-25070. doi: 10.1364/OE.22.025065
    [8] Bartnik A, Gulliford C, Bazarov I, et al. Operational experience with nanocoulomb bunch charges in the Cornell photoinjector[J]. Physical Review Accelerators and Beams, 2015, 18: 083401. doi: 10.1103/PhysRevSTAB.18.083401
    [9] 黎维华, 唐军, 陈亚男, 等. FEL驱动激光器的研究[J]. 激光技术, 2009, 33(6):619-621,625

    Li Weihua, Tang Jun, Chen Ya’nan, et al. Research of the drive laser for FEL[J]. Laser Technology, 2009, 33(6): 619-621,625
    [10] Li Xiaoping, Wang Jiuqing, Xu Jinqiang, et al. Constructions and preliminary HV conditioning of a photocathode direct-current electron gun at IHEP[J]. Chinese Physics Letters, 2017, 34: 072901. doi: 10.1088/0256-307X/34/7/072901
    [11] 李孝燊, 徐金强, 孙大睿. 高能所光阴极驱动激光系统研制[J]. 强激光与粒子束, 2018, 30:021001 doi: 10.11884/HPLPB201830.170344

    Li Xiaoshen, Xu Jinqiang, Sun Darui. Drive laser system for a photocathode at IHEP[J]. High Power Laser and Particle Beams, 2018, 30: 021001 doi: 10.11884/HPLPB201830.170344
    [12] Wang Zhiwen, Huang Senlin, Lin Lin, et al. Drive laser system for the DC-SRF photoinjector at Peking University[J]. Chinese Physics C, 2016, 40: 017004. doi: 10.1088/1674-1137/40/1/017004
    [13] Quan Shengwen, Hao Jiankui, Lin Lin, et al. Stable operation of the DC-SRF photoinjector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 789: 117-120.
    [14] Liu Yunqi, Chen Meng, Huang Senlin, et al. Engineering design of low-emittance DC-SRF photocathode injector[C]//Proceedings of the 39th International Free Electron Laser Conference (FEL2019). 2019: 460-462.
    [15] Ouyang Dongming, Feng Liwen, Huang Senlin, et al. Research on alkali antimonide photocathode fabrication recipe at PKU[C]//Proceedings of 63th ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs. 2019: 120-122.
    [16] Hao Jiankui, Quan Shengwen, Lin Lin, et al. Development of DC-SRF injector at Peking University[C]//Proceedings of 6th International Particle Accelerator Conference. 2015: 2944-2947.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  885
  • HTML全文浏览量:  266
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-06
  • 修回日期:  2022-04-18
  • 录用日期:  2022-04-28
  • 网络出版日期:  2022-05-06
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回