留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
尚建力, 王君涛, 彭万敬, 等. 二极管泵浦高能激光研究进展和展望[J]. 强激光与粒子束, 2022, 34: 011007. doi: 10.11884/HPLPB202234.210530
引用本文: 尚建力, 王君涛, 彭万敬, 等. 二极管泵浦高能激光研究进展和展望[J]. 强激光与粒子束, 2022, 34: 011007. doi: 10.11884/HPLPB202234.210530
Shang Jianli, Wang Juntao, Peng Wanjing, et al. Research progress and prospects of laser diode pumped high-energy laser[J]. High Power Laser and Particle Beams, 2022, 34: 011007. doi: 10.11884/HPLPB202234.210530
Citation: Shang Jianli, Wang Juntao, Peng Wanjing, et al. Research progress and prospects of laser diode pumped high-energy laser[J]. High Power Laser and Particle Beams, 2022, 34: 011007. doi: 10.11884/HPLPB202234.210530

二极管泵浦高能激光研究进展和展望

doi: 10.11884/HPLPB202234.210530
详细信息
    作者简介:

    尚建力,shangjianli@outlook.com

  • 中图分类号: TN248.1

Research progress and prospects of laser diode pumped high-energy laser

  • 摘要: 高能激光广泛应用于材料加工、科学研究、空间碎片清除、军事应用等领域。二极管泵浦高能激光具有结构紧凑,系统简单、全电驱无限弹仓的特点,近年来,各类二极管泵浦高能激光围绕着同时实现高功率、高效率、高光束质量这一总目标发展迅速。详细综述了国内外高平均功率块状固体激光、高功率可见光波段激光、高峰值功率激光、高功率光纤激光、碱金属蒸气激光等二极管泵浦高能激光的研究进展,并对其发展趋势进行了展望。
  • 图  1  美国诺斯罗普∙格鲁曼公司105 kW激光光路示意图

    Figure  1.  Schematic diagram of 105 kW laser of Northrop Grumman

    图  2  中国科学院理化研究所板条大面泵浦复合冷却结构示意图

    Figure  2.  Schematic diagram of the composite cooling large surface pump slats of TIPC-CAS

    图  3  传导冷却端面泵浦板条激光示意图

    Figure  3.  Schematic diagram of end-pumped slab laser with conduction cooling structure

    图  4  中国工程物理研究院端面泵浦Yb:YAG板条MOPA激光器光路示意图

    Figure  4.  Schematic diagram of end-pumped YAG slab laser with MOPA structure of CAEP

    图  5  平面波导介质示意与美国雷神公司30 kW平面波导激光设计

    Figure  5.  30 kW laser design concept of Raytheon

    图  6  中国工程物理研究院10 kW级平面波导激光器

    Figure  6.  10 kW planar waveguide laser of CAEP

    图  7  美国波音公司10薄片非稳腔激光器

    Figure  7.  Packaging evolution from the laboratory demonstration unit, to the optimized 100 kW head

    图  8  美国达信公司ThinZag直接液冷激光器

    Figure  8.  Direct liquid-cooled ThinZag laser of Textron

    图  9  美国通用原子公司直接液冷薄片阵列激光器

    Figure  9.  Direct liquid-cooled thin-disk array laser of General Atomics

    图  10  中国科学院单纤10.14 kW激光输出实验结构图[28]

    Figure  10.  Diagram of experimental setup of laser system of SIOM of CAS

    图  11  麻省理工学院基于伪随机编码信号调制实现 3.1 kW 窄线宽线偏振光纤激光结构示意图[41]

    Figure  11.  Experimental setup of 3.1 kW narrow linewidth fiber amplifier based on PRBS phase-modulated seed of MIT

    图  12  中国工程物理研究院基于白噪声相位调制实现3.25 kW 窄线宽光纤激光实验结构[43]

    Figure  12.  Scheme of the 3.25 kW all-fiber PM amplifier based on WNS phase-modulated seed of CAEP

    图  13  中国工程物理研究院基于白噪声相位调制实现3.25 kW 窄线宽光纤激光实验结果[43]

    Figure  13.  Experiments results of the 3.25 kW all-fiber PM amplifier based on WNS phase-modulated seed of CAEP

    图  14  林肯实验室光纤激光相干合成实验系统[44]

    Figure  14.  Experimental setup of fiber laser combining system of Lincoln Laboratory

    图  15  美国空军实验室基于DOE的共孔径相干合成系统[45]

    Figure  15.  Schematic of DOE common aperture coherent combining system of AFRL

    图  16  洛克希德·马丁公司30 kW光谱合成输出光谱图[46]

    Figure  16.  Spectrum of the SBC output beam at 30 kW of Lockheed Martin

    图  17  美国利弗莫尔实验室实现14 kW的铷激光输出

    Figure  17.  14 kW rubidium laser output at Lawrence Livermore National Laboratory

    图  18  相干公司420 W绿光激光器照片

    Figure  18.  The 420 W green laser of Coherent

    图  19  通快公司脉冲绿光激光器光路图

    Figure  19.  Light path schematic diagram of green pulsed laser of TRUMPF

    图  20  170 W外腔谐振倍频绿光激光器光路图

    Figure  20.  Light path schematic diagram of 170 W extra-cavity frequency doubled green laser

    图  21  板条MOPA放大绿光激光器(536 mJ@1 kHz)

    Figure  21.  Slab green laser with MOPA structure(536 mJ@1 kHz)

    图  22  IPG公司绿光激光器光路图(550W)

    Figure  22.  Light path schematic diagram of 550W green laser of IPG Photonics

    图  23  Yb:YAG薄片啁啾再生放大器光路示意图

    Figure  23.  Light path schematic diagram of Yb:YAG thin slab chirped regenerative amplifier

    图  24  Yb:YAG薄片多通放大器光路示意图

    Figure  24.  Light path schematic diagram of Yb:YAG thin slab multi-pass amplifier

    图  25  Yb:YAG单晶光纤ps激光器示意图

    Figure  25.  Schematic diagram of Yb:YAG single crystal fiber ps laser

    图  26  DAPKL激光器光路示意图

    Figure  26.  Schematic diagram of the DAPKL laser

    图  27  Mercury增益模块结构

    Figure  27.  Gain module structure of Mercury

    图  28  Lucia增益模块实物图

    Figure  28.  Actual gain module structure of Lucia

    图  29  分布式激活镜结构激光器

    Figure  29.  Distributed activated mirror structure laser

    表  1  通用原子浸入式直接液冷激光光源的功率、体积、重量等参数对比

    Table  1.   Comparison of parameters about direct liquid cooling laser

    generationpower/kWweight power ratio /(W·kg−1)volume power ratio/(kW·m−3)
    first150(synthesis)20050
    second100(single)285100
    third75(single)250280
    fourth122(single)333356
    下载: 导出CSV

    表  2  钾、铷、铯蒸气激光器相关参数

    Table  2.   Parameters of potassium, rubidium and cesium vapor lasers

    elementatomic
    weight
    melting
    point/℃
    boiling
    point/℃
    D2 line/nmD1 line/nmΔE/cm−1D2 Doppler
    linewidth (373 K) /nm
    K39.098363.65770766.70770.1157.70.00164
    Rb85.467838.89688780.25794.98237.50.00116
    Cs132.905428.84678852.35894.59554.10.00102
    elementHe 2P mixing
    rate/
    (104 s−1·Pa−1)
    He 2P3/2 broading
    rate/
    (10−5 nm·Pa)
    He 2P1/2 broading
    rate/
    (10−5 nm·Pa)
    quantum
    efficiency/%
    energy
    level
    lifetime/ns
    spontaneous
    emission
    rate/(106 s−1)
    K8.00.0340.02699.5626.7(D1)/26.3(D2)
    Rb0.0440.0440.03698.127.7(D1)/26.2(D2)36.1(D1)/38.1(D2)
    Cs0.00050.0720.06995.3≈30.5
    下载: 导出CSV
  • [1] 孙承纬. 激光辐照效应[M]. 北京: 国防工业出版社, 2002

    Sun Chengwei. Laser irradiation effect[M]. Beijing: National Defense Industry Press, 2002
    [2] 宋宏伟, 黄晨光. 激光辐照诱导的热与力学效应[J]. 力学进展, 2016, 46(1):435-477

    Song Hongwei, Huang Chenguang. Progress in thermal-mechanical effects induced by laser[J]. Advances in Mechanics, 2016, 46(1): 435-477
    [3] Marmo J, Injeyan H, Komine H, et al. Joint high power solid state laser program advancements at Northrop Grumman[C]//Proceedings of SPIE 7195, Fiber Lasers VI: Technology, Systems, and Applications. 2009: 719507.
    [4] Mcnaught S J, Asman C P, Injeyan A, et al. 100-kW coherently combined Nd: YAG MOPA laser array[C]//Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest. 2009: 321-334.
    [5] Chen Junchi, Li Jiang, Xu Jialin, et al. 4350 W quasi-continuous-wave operation of a diode face-pumped ceramic Nd: YAG slab laser[J]. Optics & Laser Technology, 2014, 63: 50-53.
    [6] 郭亚丁. 高能固体激光自适应光学光束质量控制[C]//第四届大气光学及自适应光学技术发展研讨会. 2019

    Guo Yading. Beam quality control technology for high energy solid laser system[C]//The Fourth Symposium on the Development of Atmospheric Optics and Adaptive Optics. 2019
    [7] 王超, 唐晓军, 徐鎏婧, 等. 输出功率11kW的高功率固体板条激光器介质热分析[J]. 中国激光, 2010, 37(11):2807-2809 doi: 10.3788/CJL20103711.2807

    Wang Chao, Tang Xiaojun, Xu Liujing, et al. Investigation on thermal effect of high power slab laser with 11 kW[J]. Chinese Journal of Lasers, 2010, 37(11): 2807-2809 doi: 10.3788/CJL20103711.2807
    [8] 高清松, 胡浩, 裴正平, 等. 10kW级固体板条激光放大器设计与实验研究[J]. 中国激光, 2012, 39:0202001 doi: 10.3788/CJL201239.0202001

    Gao Qingsong, Hu Hao, Pei Zhengping, et al. Design and experiment study of all-solid slab laser amplifier with laser power of 10 kW[J]. Chinese Journal of Lasers, 2012, 39: 0202001 doi: 10.3788/CJL201239.0202001
    [9] Li Mi, Hu Hao, Gao Qingsong, et al. A 7.08-kW YAG/Nd: YAG/YAG composite ceramic slab laser with dual concentration doping[J]. IEEE Photonics Journal, 2017, 9: 1504010.
    [10] Xu Liu, Wu Yingchen, Du Yinglei, et al. High brightness laser based on Yb: YAG MOPA chain and adaptive optics system at room temperature[J]. Optics Express, 2018, 26(11): 14592-14600. doi: 10.1364/OE.26.014592
    [11] Wang Dan, Du Yinglei, Wu Yingchen, et al. 20 kW class high-beam-quality CW laser amplifier chain based on a Yb: YAG slab at room temperature[J]. Optics Letters, 2018, 43(16): 3838-3841. doi: 10.1364/OL.43.003838
    [12] Filgas D, Rockwell D, Spariosa K. Next generation lasers for advanced EO systems[J]. Raytheon Technology Today, 2008, 1: 9-13.
    [13] Filgas D, Clatterbuck T, Cashen M, et al. Recent results for the Raytheon RELI program[C]//Proceedings of SPIE 8381, Laser Technology for Defense and Security VIII. 2012: 83810W.
    [14] Giesen A, Speiser J. Fifteen years of work on thin-disk lasers: results and scaling laws[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 598-609. doi: 10.1109/JSTQE.2007.897180
    [15] Nixon M D, Cates M C. High energy high brightness thin disk laser[C]//Proceedings of SPIE 8547, High-Power Lasers 2012: Technology and Systems. 2012: 85470D.
    [16] Wilmington M A. Textron defense systems awarded funding for the DARPA HELLADS Program[R]. 2008.
    [17] Mandl A, Klimek D E. Textron's J-HPSSL 100 kW ThinZag® laser program[C]//Conference on Lasers and Electro-Optics 2010. 2010: JThH2.
    [18] GA-EMS and Boeing Team to Develop 300 kW-class HELWS Prototype for US Army[EB/OL].https://www.ga.com/ga-ems-and-boeing-team-to-develop-300kw-class-helws-prototype-for-us-army
    [19] Nie R Z, She J B, Zhao P F, et al. Fully immersed liquid cooling thin-disk oscillator[J]. Laser Physics Letters, 2014, 11: 115808. doi: 10.1088/1612-2011/11/11/115808
    [20] Fu Xing, Li Peilin, Liu Qiang, et al. 3 kW liquid-cooled elastically-supported Nd: YAG multi-slab CW laser resonator[J]. Optics Express, 2014, 22(15): 18421-18432. doi: 10.1364/OE.22.018421
    [21] Fu Xing, Liu Qiang, Li Peilin, et al. Numerical simulation of 30-kW class liquid-cooled Nd: YAG multi-slab resonator[J]. Optics Express, 2015, 23(14): 18458-18470. doi: 10.1364/OE.23.018458
    [22] Ye Zhibin, Liu Chong, Tu Bo, et al. Kilowatt-level direct-‘refractive index matching liquid’-cooled Nd: YLF thin disk laser resonator[J]. Optics Express, 2016, 24(2): 1758-1772. doi: 10.1364/OE.24.001758
    [23] Wang Ke, Tu Bo, Jia Chunyan, et al. 7kW direct-liquid-cooled side-pumped Nd: YAG multi-disk laser resonator[J]. Optics Express, 2016, 24(13): 15012-15020. doi: 10.1364/OE.24.015012
    [24] Yi Jiayu, Tu Bo, An Xiangchao, et al. 9 kilowatt-level direct-liquid-cooled Nd: YAG multi-module QCW laser[J]. Optics Express, 2018, 26(11): 13915-13926. doi: 10.1364/OE.26.013915
    [25] Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power[J]. Electronics Letters, 2004, 40(8): 470-472. doi: 10.1049/el:20040298
    [26] O'Connor M, Gapontsev V, Fomin V, et al. Power scaling of SM fiber lasers toward 10kW[C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. 2009: CThA3.
    [27] Shiner B. The impact of fiber laser technology on the world wide material processing market[C]//CLEO: 2013. 2013: AF2J. 1.
    [28] 陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报, 2019, 39:0336001 doi: 10.3788/AOS201939.0336001

    Chen Xiaolong, Lou Fengguang, He Yu, et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39: 0336001 doi: 10.3788/AOS201939.0336001
    [29] 林傲祥, 倪力, 彭昆, 等. 国产YDF有源光纤实现单纤20 kW激光输出[J]. 中国科技成果, 2021, 22(13):7-9 doi: 10.3772/j.issn.1009-5659.2021.13.004

    Lin Aoxiang, Ni Li, Peng Kun, et al. 10 kW-level pump-gain integrated functional laser fiber[J]. China Science and Technology Achievements, 2021, 22(13): 7-9 doi: 10.3772/j.issn.1009-5659.2021.13.004
    [30] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [31] Otto H J, Jauregui C, Limpert J, et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[C]//Proceedings of SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications. 2016: 97280E.
    [32] Liu Zejin, Zhou Pu, Xu Xiaojun, et al. Coherent beam combining of high power fiber lasers: progress and prospect[J]. Science China Technological Sciences, 2013, 56(7): 1597-1606. doi: 10.1007/s11431-013-5260-z
    [33] Loftus T H, Thomas A M, Hoffman P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 487-497. doi: 10.1109/JSTQE.2007.896568
    [34] Madasamy P, Thomas A, Loftus T, et al. Comparison of spectral beam combining approaches for high power fiber laser systems[C]//Frontiers in Optics 2008/Laser Science XXIV/Plasmonics and Metamaterials/Optical Fabrication and Testing. 2008: FTuJ3.
    [35] Kobyakov A, Sauer M, Chowdhury D. Stimulated Brillouin scattering in optical fibers[J]. Advances in Optics and Photonics, 2010, 2(1): 1-59. doi: 10.1364/AOP.2.000001
    [36] Huang Zhihua, Liang Xiaobao, Li Chengyu, et al. Spectral broadening in high-power Yb-doped fiber lasers employing narrow-linewidth multilongitudinal-mode oscillators[J]. Applied Optics, 2016, 55(2): 297-302. doi: 10.1364/AO.55.000297
    [37] Yan Ping, Huang Yusheng, Sun Junyi, et al. 3.1 kW monolithic MOPA configuration fibre laser bidirectionally pumped by non-wavelength-stabilized laser diodes[J]. Laser Physics Letters, 2017, 14: 080001. doi: 10.1088/1612-202X/aa7c92
    [38] Huang Yusheng, Xiao Qirong, Li Dan, et al. 3 kW narrow linewidth high spectral density continuous wave fiber laser based on fiber Bragg grating[J]. Optics & Laser Technology, 2021, 133: 106538.
    [39] Xu Jiangming, Liu Wei, Leng Jinyong, et al. Power scaling of narrowband high-power all-fiber superfluorescent fiber source to 1.87 kW[J]. Optics Letters, 2015, 40(13): 2973-2976. doi: 10.1364/OL.40.002973
    [40] 杨依枫, 沈辉, 陈晓龙, 等. 全光纤化高效率、窄线宽光纤激光器实现2.5 kW近衍射极限输出[J]. 中国激光, 2016, 43:0419004

    Yang Yifeng, Shen Hui, Chen Xiaolong, et al. 2.5 kW near diffraction limit output of all fiber high efficiency, narrow linewidth fiber laser[J]. Chinese Journal of Lasers, 2016, 43: 0419004
    [41] Yu C X, Shatrovoy O, Fan T Y, et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier[J]. Optics Letters, 2016, 41(22): 5202-5205. doi: 10.1364/OL.41.005202
    [42] Wang Yanshan, Ke Weiwei, Peng Wanjing, et al. 3 kW, 0.2 nm narrow linewidth linearly polarized all-fiber laser based on a compact MOPA structure[J]. Laser Physics Letters, 2020, 17: 075101. doi: 10.1088/1612-202X/ab8e42
    [43] Wang Yanshan, Sun Yinhong, Peng Wanjing, et al. 3.25 kW all-fiberized and polarization-maintained Yb-doped amplifier with a 20 GHz linewidth and near-diffraction-limited beam quality[J]. Applied Optics, 2021, 60(21): 6331-6336. doi: 10.1364/AO.431081
    [44] Missile defense agency for president’s budget submission FY 2015: RDT&E Program, 2014-03.
    [45] Flores A, Dajani I. Kilowatt-class, all-fiber amplifiers for beam combining[J]. SPIE Newsroom Lasers & Sources, 2016.
    [46] Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]//Proceedings of SPIE 9730, Components and Packaging for Laser Systems II. 2016: 97300Y.
    [47] 唐晓军, 王钢, 刘娇, 等. 高亮度固体激光器技术发展研究[J]. 中国工程科学, 2020, 22(3):49-55

    Tang Xiaojun, Wang Gang, Liu Jiao, et al. Development of high brightness solid-state laser technology[J]. Strategic Study of CAE, 2020, 22(3): 49-55
    [48] Zheng Ye, Zhu Zhanda, Liu Xiaoxi, et al. High-power, high-beam-quality spectral beam combination of six narrow-linewidth fiber amplifiers with two transmission diffraction gratings[J]. Applied Optics, 2019, 58(30): 8339-8343. doi: 10.1364/AO.58.008339
    [49] Krupke W F. Diode-pumped alkali laser: 6643311[P] 2003-11-4.
    [50] Krupke W, Beach R J, Kanz V K, et al. Resonance transition 795-nm rubidium laser[J]. Optics Letters, 2003, 28(23): 2336-2338. doi: 10.1364/OL.28.002336
    [51] Zhdanov B V, Ehrenreich T, Knize R J. Highly efficient optically pumped cesium vapor laser[J]. Optics Communications, 2006, 260(2): 696-698. doi: 10.1016/j.optcom.2005.11.042
    [52] Zweiback J, Krupke B. High power diode pumped alkali vapor lasers[C]//Proceedings of SPIE 7005, High-Power Laser Ablation VII. 2008: 700525.
    [53] Miller W S, Sulham C V, Holtgrave J C, et al. Limitations of an optically pumped rubidium laser imposed by atom recycle rate[J]. Applied Physics B, 2011, 103(4): 819-824. doi: 10.1007/s00340-011-4540-1
    [54] Novel diode-pumped alkali laser achieves first light[R]. http://www.wpafb.af.mil/news/story.asp?id=123212683.
    [55] Bogachev A V, Garanin S G, Dudov A M, et al. Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation[J]. Quantum Electronics, 2012, 42(2): 95-98. doi: 10.1070/QE2012v042n02ABEH014734
    [56] Chronology of MDA’s plans for laser boost-phase defense[R/OL]. (2016-08-26).https://mostlymissiledefense.com/2016/08/26/chronology-of-mdas-plans-for-laser-boost-phase-defense-august-26-2016/.
    [57] MDA. Department of Energy National Nuclear Security Administration[R]. Washington, 20585.
    [58] Wisoff P J. Diode pumped alkaline laser system: a high powered, low SWaP directed energy option for ballistic missile defense high-level summary-April 2017[R]. LLNL-TR-730237, 2017.
    [59] Department of Defense Fiscal Year(R) 2017 President’s Budget Submission, February 2016[Z].
    [60] Honea E C, Ebbers C A, Beach R J, et al. Analysis of an intracavity-doubled diode-pumped Q-switched Nd: YAG laser producing more than 100 W of power at 0.532 μm[J]. Optics Letters, 1998, 23(15): 1203-1205. doi: 10.1364/OL.23.001203
    [61] Yi J, Moon H J, Lee J. Diode-pumped 100-W green Nd: YAG rod laser[J]. Applied Optics, 2004, 43(18): 3732-3737. doi: 10.1364/AO.43.003732
    [62] Dudley D R, Mehl O, Wang G Y, et al. Q-switched diode-pumped Nd: YAG rod laser with output power of 420W at 532nm and 160W at 355nm[C]//Proceedings of SPIE 7193, Solid State Lasers XVIII: Technology and Devices. 2009: 71930Z.
    [63] Sascha W, Hangst A, Stolzenburg C, et al. Frequency doubled high-power disk lasers in pulsed and continuous-wave operation[C]//Proceedings of SPIE 8239, High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications. 2012: 823907.
    [64] Meier T, Willke B, Danzmann K. Continuous-wave single-frequency 532 nm laser source emitting 130 W into the fundamental transversal mode[J]. Optics Letters, 2010, 35(22): 3742-3744. doi: 10.1364/OL.35.003742
    [65] Avdokhin A, Gapontsev V, Grapov Y S. 170W continuous-wave single-frequency single-mode green fiber laser[C]//Conference on Fiber Lasers IX - Technology, Systems, and Applications. 2012.
    [66] Favre S, Sidler T C, Salathe R P. High-power second harmonic generation with free-running Nd: YAG slab laser for micromachining applications[C]//Proceedings of SPIE 4088, First International Symposium on Laser Precision Microfabrication. 2000: 195-195.
    [67] Gapontsev V, Avdokhin A, Kadwani P, et al. SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power[C]//Proceedings of SPIE 8964, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XIII. 2014: 896407.
    [68] Nubbemeyer T, Kaumanns M, Ueffing M, et al. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 2017, 42(7): 1381-1384. doi: 10.1364/OL.42.001381
    [69] Röcker C, Loescher A, Bienert F, et al. Ultrafast green thin-disk laser exceeding 1.4 kW of average power[J]. Optics Letters, 2020, 45(19): 5522-5525. doi: 10.1364/OL.403781
    [70] Russbueldt P, Mans T, Hoffmann H D, et al. 1100 W Yb: YAG femtosecond Innoslab amplifier[C]//Proceedings Volume 7912, Solid State Lasers XX: Technology and Devices. 2011: 79120R.
    [71] Kuznetsov I, Mukhin I, Palashov O, et al. Thin-rod Yb: YAG amplifiers for high average and peak power lasers[J]. Optics Letters, 2018, 43(16): 3941-3944. doi: 10.1364/OL.43.003941
    [72] Li Feng, Wang Nana, Yang Zhi, et al. High-energy femtosecond laser system based on a fiber laser seeder, Yb: YAG single crystal fiber and chirped volume Bragg grating[J]. Laser Physics Letters, 2020, 17: 065103. doi: 10.1088/1612-202X/ab86b2
    [73] Injeyan H, Goodno G D. High-power laser handbook[M]. New York: McGraw-Hill Professional, 2011.
    [74] Yasuhara R, Kawashima T, Sekine T, et al. 213 W average power of 2.4 GW pulsed thermally controlled Nd: glass zigzag slab laser with a stimulated Brillouin scattering mirror[J]. Optics Letters, 2008, 33(15): 1711-1713. doi: 10.1364/OL.33.001711
    [75] Fan Zhongwei, Qiu Jisi, Kang Zhijun, et al. High beam quality 5 J, 200 Hz Nd: YAG laser system[J]. Light: Science & Applications, 2017, 6: e17004.
    [76] Bayramian A, Armstrong P, Ault E, et al. The mercury project: a high average power, gas-cooled laser for inertial fusion energy development[J]. Fusion Science and Technology, 2007, 52(3): 383-387. doi: 10.13182/FST07-A1517
    [77] Gonçalvès-Novo T, Albach D, Vincent B, et al. 14 J/2 Hz Yb3+: YAG diode pumped solid state laser chain[J]. Optics Express, 2013, 21(1): 855-866. doi: 10.1364/OE.21.000855
    [78] Banerjee S, Mason P D, Ertel K, et al. 100  J-level nanosecond pulsed diode pumped solid state laser[J]. Optics Letters, 2016, 41(9): 2089-2092. doi: 10.1364/OL.41.002089
    [79] Liu Tinghao, Sui Zhan, Chen Lin, et al. 12 J, 10 Hz diode-pumped Nd: YAG distributed active mirror amplifier chain with ASE suppression[J]. Optics Express, 2017, 25(18): 21981-21992. doi: 10.1364/OE.25.021981
  • 加载中
图(29) / 表(2)
计量
  • 文章访问数:  2004
  • HTML全文浏览量:  711
  • PDF下载量:  366
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-30
  • 修回日期:  2021-12-31
  • 网络出版日期:  2022-01-14
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回