留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合肥先进光源储存环初步物理设计

白正贺 刘刚文 何天龙 李伟伟 杨鹏辉 李为民 张善才 王琳 冯光耀

白正贺, 刘刚文, 何天龙, 等. 合肥先进光源储存环初步物理设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202234.220137
引用本文: 白正贺, 刘刚文, 何天龙, 等. 合肥先进光源储存环初步物理设计[J]. 强激光与粒子束. doi: 10.11884/HPLPB202234.220137
Bai Zhenghe, Liu Gangwen, He Tianlong, et al. Preliminary physics design of the Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202234.220137
Citation: Bai Zhenghe, Liu Gangwen, He Tianlong, et al. Preliminary physics design of the Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202234.220137

合肥先进光源储存环初步物理设计

doi: 10.11884/HPLPB202234.220137
基金项目: 国家自然科学基金项目(11875259, 12005226, 12105284)
详细信息
    作者简介:

    白正贺,baizhe@ustc.edu.cn

    通讯作者:

    王 琳,wanglin@ustc.edu.cn

    冯光耀,fenggy@ustc.edu.cn

  • 中图分类号: TL54+4

Preliminary physics design of the Hefei Advanced Light Facility storage ring

  • 摘要: 我国最近立项建设的合肥先进光源将是一台软X射线与真空紫外衍射极限储存环光源,其电子束能量为2.2 GeV,周长为480 m,束流自然发射度为86 pm·rad,共有20个长直线节和20个短直线节。介绍了目前合肥先进光源储存环物理设计的进展情况,包括磁聚焦结构设计与优化,束流注入和集体效应的模拟与计算。
  • 图  1  HALF储存环单个周期的lattice

    Figure  1.  Lattice of the HALF storage ring

    图  2  HALF储存环的动力学孔径

    Figure  2.  Dynamic aperture of the HALF storage ring

    图  3  随水平方向振幅和能量变化的频率

    Figure  3.  Tune shifts with horizontal amplitude and momentum

    图  4  HALF注入系统布局示意图

    Figure  4.  Schematic of the layout of the HALF injection system

    图  5  脉冲多极铁束流注入过程的相空间跟踪

    Figure  5.  Phase space tracking of injected bunch with the multipole kicker injection

    表  1  HALF储存环主要参数

    Table  1.   Main parameters of the HALF storage ring

    parametervalue
    energy2.2 GeV
    circumference479.86 m
    number of cells20
    natural emittance86.3 pm·rad
    transverse tunes (H/V)48.15/17.15
    natural chromaticities (H/V)−77/−57
    momentum compaction factor9.0×10−5
    damping partition numbers (H/V/L)1.39/1.00/1.61
    natural damping times (H/V/L)27.2/37.7/23.4 ms
    energy loss per turn186.7 keV
    natural energy spread0.62×10−3
    total absolute bending angle442.5°
    number of straight sections20 (long) + 20 (short)
    harmonic number (500 MHz RF cavity)800
    下载: 导出CSV

    表  2  考虑束内散射效应的束流水平方向发射度和能散

    Table  2.   Beam horizontal emittance and energy spread with intra-beam scattering

    bunch length/mmcoupling ratio/%horizontal emittance/(pm·rad)energy spread
    2102409.79×10−4
    21001039.07×10−4
    8101538.74×10−4
    8100688.26×10−4
    下载: 导出CSV
  • [1] Bei M, Borland M, Cai Y, et al. The potential of an ultimate storage ring for future light sources[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 622(3): 518-535.
    [2] Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(Pt 5): 843-855.
    [3] Li Weimin, Wang Lin, Feng Guangyao, et al. The concept of Hefei Advanced Light Source (HALS)[C]//Proceedings of EPAC08. 2008: 2136-2138.
    [4] Wang Lin, Feng Guangyao, Zhang Shancai, et al. The lattice design of Hefei advanced light source (HALS) storage ring[C]//Proceedings of EPAC08. 2008: 2142-2144.
    [5] Wang Lin, Li Weimin, Feng Guangyao, et al. The upgrade project of Hefei light source (HLS)[C]//Proceedings of IPAC’10. 2010: 2588-2590.
    [6] Bai Zhenghe, Yang Penghui, Li Weimin, et al. Design study for the first version of the HALS lattice[C]//Proceedings of IPAC2017. 2017: 2713-2715.
    [7] Bai Zhenghe, Wang Lin. Study of multi-bend achromat lattices for the HALS diffraction-limited storage ring[C]//60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources. 2018: 25-27.
    [8] Bai Zhenghe, Yang Penghui, Yang Zihui, et al. Design of the second version of the HALS storage ring lattice[C]//9th International Particle Accelerator Conference. 2018: 4601-4604.
    [9] Bai Zhenghe, Wang Lin. Super-period multi-bend achromat lattice with interleaved dispersion bumps for the HALS storage ring[C]//9th International Particle Accelerator Conference. 2018: 3597-3599.
    [10] Bai Zhenghe, Li Wei, Liu Gangwen, et al. Study of seven-bend achromat lattices with interleaved dispersion bumps for HALS[C]//10th International Particle Accelerator Conference. 2019: 1495-1497.
    [11] Bai Zhenghe, Liu Gangwen, Li Wei, et al. Super-period locally symmetric lattices for designing diffraction-limited storage rings[C]//10th International Particle Accelerator Conference. 2019: 1498-1500.
    [12] Bai Zhenghe, Liu Gangwen, He Tianlong, et al. A modified hybrid 6BA lattice for the HALF storage ring[C]//12th International Particle Accelerator Conference. 2021: 407-409.
    [13] Einfeld D, Plesko M, Schaper J. First multi-bend achromat lattice consideration[J]. Journal of Synchrotron Radiation, 2014, 21(Pt 5): 856-861.
    [14] Farvacque L, Carmignani N, Chavanne J, et al. A low-emittance lattice for the E. S. R. F. [C]//Proceedings of IPAC2013. 2013: 79-81.
    [15] Borland M, Sun Y, Sajaev V, et al. Lower emittance lattice for the advanced photon source upgrade using reverse bending magnets[C]//Proceedings of NAPAC2016. 2016: 877-880.
    [16] Riemann B, Streun A. Low emittance lattice design from first principles: reverse bending and longitudinal gradient bends[J]. Physical Review Accelerators and Beams, 2019, 22: 021601. doi: 10.1103/PhysRevAccelBeams.22.021601
    [17] Alekou A, Bartolini R, Carmignani N, et al. Study of a double triple bend achromat (DTBA) lattice for a 3 GeV light source[C]//Proceedings of IPAC2016. 2016: 407-409.
    [18] Xu Jianhao, Yang Penghui, Liu Gangwen, et al. Constraint handling in constrained optimization of a storage ring multi-bend-achromat lattice[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 988: 164890. doi: 10.1016/j.nima.2020.164890
    [19] Takaki H, Nakamura N, Kobayashi Y, et al. Beam injection with a pulsed sextupole magnet in an electron storage ring[J]. Physical Review Special Topics-Accelerators and Beams, 2010, 13: 020705. doi: 10.1103/PhysRevSTAB.13.020705
    [20] He Tianlong, Bai Zhenghe. Graphics-processing-unit-accelerated simulation for longitudinal beam dynamics of arbitrary bunch trains in electron storage rings[J]. Physical Review Accelerators and Beams, 2021, 24: 104401. doi: 10.1103/PhysRevAccelBeams.24.104401
    [21] He Tianlong, Li Weiwei, Bai Zhenghe, et al. Periodic transient beam loading effect with passive harmonic cavities in electron storage rings[J]. Physical Review Accelerators and Beams, 2022, 25: 024401. doi: 10.1103/PhysRevAccelBeams.25.024401
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  56
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-02
  • 修回日期:  2022-06-14
  • 网络出版日期:  2022-06-17

目录

    /

    返回文章
    返回