Volume 31 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
Pang Jiaxin, He Xiang, Chen Bingyan, et al. Diagnostic study and simulation of capacitive coupled RF plasma[J]. High Power Laser and Particle Beams, 2019, 31: 032002. doi: 10.11884/HPLPB201931.180329
Citation: Pang Jiaxin, He Xiang, Chen Bingyan, et al. Diagnostic study and simulation of capacitive coupled RF plasma[J]. High Power Laser and Particle Beams, 2019, 31: 032002. doi: 10.11884/HPLPB201931.180329

Diagnostic study and simulation of capacitive coupled RF plasma

doi: 10.11884/HPLPB201931.180329
  • Received Date: 2018-11-18
  • Rev Recd Date: 2019-02-21
  • Publish Date: 2019-03-15
  • Aiming at the discharge characteristics of radio frequency capacitively coupled (CCRF) plasma at moderate pressure and medium power, a one-dimensional plasma discharge model was established by using COMSOL software based on fluid model. The distribution law in plasma electron temperature and electron density were studied at the same pressure and different radio frequency input power with Ar gas as working gas. At the same time, a closed glass cavity and a flat plate electrode of the same size were designed and fabricated according to the simulation model. The effective current, voltage and emission spectrum of the discharge plasma were measured experimentally at different RF input power. The electron temperature and electron density of the plasma were calculated by the current-voltage relationship and the energy balance equation. The electron temperature and electron density of plasma were obtained by Boltzmann double-wire method. When the gas pressure was 250 Pa and the input power was 100-450 W, the plasma voltage and current showed a linear relationship. The electron density increased with the increase of the power, but the electron temperature did not change with the change of the power. At the same time, the accuracy of the experiment was further verified by simulation. In this paper, the discharge parameters of plasma at moderate pressure are preliminarily diagnosed by combining the equivalent circuit method, spectral method and numerical simulation method, and a combination of these three methods is proposed for experiment to make the experimental results more convincing and to provide a basis for further study of plasma characteristics.
  • loading
  • [1]
    李欣, 刘建朋, 陈烁, 等. 大高宽比纳米硅立柱的感应耦合等离子体刻蚀工艺优化[J]. 强激光与粒子束, 2017, 29: 074102. doi: 10.11884/HPLPB201729.170028

    Li Xin, Liu Jianpeng, Chen Shuo, et al. Process optimization of inductively coupled plasma etching for large aspect ratio silicon nanopillars. High Power Laser and Particle Beams, 2017, 29: 074102 doi: 10.11884/HPLPB201729.170028
    [2]
    Bredin J, Chabert P, Aanesland A. Langmuir probe analysis of highly electronegative plasmas[J]. Applied Physics Letters, 2013, 102: 154107. doi: 10.1063/1.4802252
    [3]
    Ross J S, Park H S, Berger R. Couisionless coupling of ion and electron temperatures in counter streaming plasma flows[J]. Physical Review Letters, 2013, 110: 145005. doi: 10.1103/PhysRevLett.110.145005
    [4]
    Godyak V A. Soviet radio frequency discharge research[M]. A: Delphic Associates Inc., 1986: 28-52.
    [5]
    Raizer Y P, Gas discharge physics[M]. Berlin: Springer, 1991: 387-394.
    [6]
    Li S Z, Lim J P, Uhm H S. Discharge characteristics of an atmospheric-pressure capacitively couple radio-frequency argon plasma[J]. Physics Letter, 2006, A360: 304-308.
    [7]
    王宇天, 张百灵, 李益文, 等. 基于均匀模型的低气压电容耦合射频放电特性研究[J]. 真空科学与技术学报, 2016, 36(7): 773-778. doi: 10.13922/j.cnki.cjovst.2016.07.09

    Wang Yutian, Zhang Bailing, Li Yiwen, et al. Modeling and characterization of low-pressure capacitive coupled rf discharge properties. Chinese Journal of Vacuum Science and Technology, 2016, 36(7): 773-778 doi: 10.13922/j.cnki.cjovst.2016.07.09
    [8]
    吴荣, 李燕, 朱顺管, 等. 等离子体电子温度的发射光谱法诊断[J]. 光谱学与光谱分析, 2008, 28(4): 731-735. doi: 10.3964/j.issn.1000-0593.2008.04.003

    Wu Rong, Li Yan, Zhu Shunguan, et al. Emission spectroscopy diagnostics of plasma electron temperature. Spectroscopy and Spectral Analysis, 2008, 28(4): 731-735 doi: 10.3964/j.issn.1000-0593.2008.04.003
    [9]
    董丽芳, 冉俊霞, 尹增谦, 等. 大气压氩气介质阻挡放电中的电子激发温度[J]. 光谱学与光谱分析, 2005, 25(8): 1184-1186. doi: 10.3321/j.issn:1000-0593.2005.08.005

    Dong Lifang, Ran Junxia, Yin Zengqian, et al. Electron excitation temperature of argon dielectric barrier discharge at atmospheric pressure. Spectroscopy and Spectral Analysis, 2005, 25(8): 1184-1186 doi: 10.3321/j.issn:1000-0593.2005.08.005
    [10]
    刘大斌, 杨栋, 蒋荣光, 等. 导爆管起爆器瞬态电火花温度的光谱法测定[J]. 光谱学与光谱分析, 2002, 22(4): 670-672. doi: 10.3321/j.issn:1000-0593.2002.04.041

    Liu Dabin, Yang Dong, Jiang Rongguang, et al. Spectroscopic determination of the dynamic electrical spark temperature of nonel tube igniter. Spectroscopy and Spectra Analysis, 2002, 22(4): 670-672 doi: 10.3321/j.issn:1000-0593.2002.04.041
    [11]
    孙成琪, 高阳, 杨德明, 等. 光谱法测量低压热喷涂等离子体的电子温度和电子密度[J]. 激光与光电子学进展, 2015, 52: 043001. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201504034.htm

    Sun Chengqi, Gao Yang, Yang Deming, et al. Spectroscopic method for measuring electron temperature and electron density of thermal spray plasma. Laser & Optoelectronics Progress, 2015, 52: 043001 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201504034.htm
    [12]
    袁玉章, 张军, 白珍, 等. 等离子体对相对论返波管工作影响的粒子模拟[J]. 强激光与粒子束, 2018, 30: 043002. doi: 10.11884/HPLPB201830.170444

    Yuan Yuzhang, Zhang Jun, Bai Zhen, et al. Simulation research on influence of RF breakdown plasma on performance of relative backward wave oscillator. High Power Laser and Particle Beams, 2018, 30: 043002 doi: 10.11884/HPLPB201830.170444
    [13]
    Chen Guangye, Raja L L. Fluid modeling of electron heating in low-pressure, high-frequency capacitively coupled plasma discharges[J]. Journal of Applied Physics, 2004, 96(11): 6073 doi: 10.1063/1.1818354
    [14]
    杨旺, 刘学平, 夏焕雄, 等. 容性耦合等离子体腔室放电特性仿真研究[J]. 真空科学与技术学报, 2015, 35(6): 639-645. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201506001.htm

    Yang Wang, Liu Xueping, Xia Huanxiong, et al. Simulation of discharge characteristics of capacitively coupled plasma. Chinese Journal of Vacuum Science and Technology, 2015, 35(6): 639-645 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201506001.htm
    [15]
    杨龙, 王强, 阚明先, 等. 微放电等离子体多负辉区结构融合过程数值模拟研究[J]. 强激光与粒子束, 2017, 29: 085002. doi: 10.11884/HPLPB201729.170047

    Yang Long, Wang Qiang, Kan Mingxian, et al. Numerical simulation of multiple negative glow regions in micro discharge plasma. High Power Laser and Particle Beams, 2017, 29: 085002 doi: 10.11884/HPLPB201729.170047
    [16]
    Mouchtouris S, Kokkoris G. A hybrid model for low pressure inductively coupled plasmas combining a fluid model for electrons with a plasma-potential-dependent energy distribution and a fluid-Monte Carlo model for ions[J]. Plasma Sources Science and Technology, 2016, 25: 025007. doi: 10.1088/0963-0252/25/2/025007
    [17]
    陈春梅, 摆玉龙, 张洁, 等. 太赫兹波斜入射到磁化等离子体的数值研究[J]. 强激光与粒子束, 2018, 30: 013101. doi: 10.11884/HPLPB201830.170276

    Chen Chunmei, Bai Yulong, Zhang Jie, et al. Numerical study of oblique incidence of terahertz wave to magnetized plasma. High Power Laser and Particle Beams, 2018, 30: 013101 doi: 10.11884/HPLPB201830.170276
    [18]
    赵日康, 张紫浩, 张林, 等. 圆柱形等离子体对微波散射的数值模拟与实验研究[J]. 强激光与粒子束, 2017, 29: 053001. doi: 10.11884/HPLPB201729.170043

    Zhao Rikang, Zhang Zihao, Zhang Lin, et al. Microwave scattering by inhomogeneous plasma column. High Power Laser and Particle Beams, 2017, 29: 053001 doi: 10.11884/HPLPB201729.170043
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views (1799) PDF downloads(161) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return