Volume 31 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
Zhao Xiaoming, Sun Chengwei, Sun Qizhi, et al. Compressed strong magnetic field confinement effect on alpha particle energy in field-reversed configuration plasma target[J]. High Power Laser and Particle Beams, 2019, 31: 125002. doi: 10.11884/HPLPB201931.190047
Citation: Zhao Xiaoming, Sun Chengwei, Sun Qizhi, et al. Compressed strong magnetic field confinement effect on alpha particle energy in field-reversed configuration plasma target[J]. High Power Laser and Particle Beams, 2019, 31: 125002. doi: 10.11884/HPLPB201931.190047

Compressed strong magnetic field confinement effect on alpha particle energy in field-reversed configuration plasma target

doi: 10.11884/HPLPB201931.190047
  • Received Date: 2019-02-21
  • Rev Recd Date: 2019-09-24
  • Publish Date: 2019-12-01
  • Based on an one dimensional elastic-plastic reactive hydro-dynamic code SSS-MHD, confinement effect, by strong magnetic field during compression of field-reversed configuration (FRC) plasma target by solid liner, on the alpha particle energy transport is studied numerically. Also, investigations on the alpha particles self-heating (including local and non-local) and end loss effects are carried out. In the physical model, plasma energy is divided into three parts as that of DT ions, electrons, and alpha particles. In addition, fusion reaction in thermal equilibrium is taken into account. Numerical results imply that FRC target behaves like rigid rotor during solid liner compression. The compressed strong magnetic field can well define alpha particle energy in O-point area in target center rather than in the axis area, which is helpful for an FRC plasma burning. The non-local self-heating power peak value locates at O-point, but the local self-heating power maximum is beyond O-point. The plasma temperature peak value of local self-heating is about 0.5 times greater than that of non-local self-heating. In the script-off layer (SOL), end loss effect of alpha particle energy increases with the solid liner convergence. Especially in the SOL boundary, peak alpha particle energy loss rate appears.
  • loading
  • [1]
    Tuszewski M. Field reversed configurations[J]. Nucl Fusion, 1988, 28(11): 2033-2092. doi: 10.1088/0029-5515/28/11/008
    [2]
    Steinhauer L C. Review of field-reversed configurations[J]. Phys Plasmas, 2011, 18: 070501. doi: 10.1063/1.3613680
    [3]
    Degnan J H, Amdahl D J, Domonkos M, et al. Recent magneto-inertial fusion experiments on the field reversed configuration heating experiment[J]. Nucl Fusion, 2013, 53: 093003. doi: 10.1088/0029-5515/53/9/093003
    [4]
    Degnan J H, Amdahl D J, Brown A, et al. Experimental and computational progress on liner implosions for compression of FRCs[J]. IEEE Trans Plasma Sci, 2008, 36(1): 80-91. doi: 10.1109/TPS.2007.913814
    [5]
    Intrator T, Zhang S Y, Degnan J H, et al. A high density field reversed configuration (FRC) target for magnetized target fusion: First internal profile measurements of a high density FRC[J]. Phys Plasmas, 2004, 11(5): 2580-2585. doi: 10.1063/1.1689666
    [6]
    Sun Q Z, Jia Y S, Yang X J, et al. Formation of field-reversed-configuration (FRC) on the Yingguang-I device[J]. Matter and Radiation at Extremes, 2017, 2(5): 263-274. doi: 10.1016/j.mre.2017.07.003
    [7]
    孙奇志, 方东凡, 刘伟, 等. " 荧光-1”实验装置物理设计[J]. 物理学报, 2013, 62:078407. (Sun Qizhi, Fang Dongfan, Liu Wei, et al. Physical design of " Yingguang-1” device. Acta Physica Sinica, 2013, 62: 078407
    [8]
    Wang X G, Wang G Q, Liu B, et al. Modeling for compression of field-reversed configurations by an imploding liner[J]. Phys Plasmas, 2016, 23: 112706. doi: 10.1063/1.4968238
    [9]
    Spencer R L, Tuszewski M, Linford R K. Adiabatic compression of elongated field-reversed configurations[J]. Phys Fluids, 1983, 26(6): 1564-1573. doi: 10.1063/1.864334
    [10]
    Yoshimura S, Sugimoto S, Ohi S, et al. Electron cyclotron current drive in a lower hybrid current drive plasma[J]. Nucl Fusion, 1999, 39(4): 2009-2014.
    [11]
    Zhang S Y. MHD instability of field-reversed configuration[J]. IEEE Trans Plasma Sci, 2006, 34(13): 223-229.
    [12]
    Lindemuth I R, Kirkpatrick R C. Parameter space for magnetized fuel targets in inertial confinement fusion[J]. Nucl Fusion, 1983, 23(3): 263-284. doi: 10.1088/0029-5515/23/3/001
    [13]
    Lindemuth I R. The ignition design space of magnetized target fusion[J]. Phys Plasmas, 2015, 22: 122712. doi: 10.1063/1.4937371
    [14]
    赵小明, 孙奇志, 贾月松. 球形及柱形磁化等离子体靶中α粒子能量沉积率分析[J]. 强激光与粒子束, 2014, 26:035002. (Zhao Xiaoming, Sun Qizhi, Jia Yuesong. Energy deposition of alpha particles in cylindrical and spherical magnetized plasma target. High Power Laser and Particle Beams, 2014, 26: 035002
    [15]
    Basko M M, Kemp A J, Meyer-ter-Vehn J. Ignition conditions for magnetized target fusion in cylindrical geometry[J]. Fusion, 2000, 40(1): 59-68. doi: 10.1088/0029-5515/40/1/305
    [16]
    赵继波, 孙承纬, 谷卓伟, 等. 爆轰驱动固体套筒压缩磁场计算及准等熵过程分析[J]. 物理学报, 2015, 64:080701. (Zhao Jibo, Sun Chengwei, Gu Zhuowei, et al. Magneto-hydrodynamic calculation of magnetic flux compression with explosion driven solid liners and analysis of quasi-isentropic process. Acta Physica Sinica, 2015, 64: 080701 doi: 10.7498/aps.64.080701
    [17]
    Zhao J B, Sun C W, Luo B Q, et al. Loading circuit coupled magnetohydrodynamic simulation of sample configurations in isentropic compression experiments[J]. IEEE Tans Plasma Sci, 2015, 43(1): 1068-1077.
    [18]
    Zhao X M, Sun Q Z, Sun C W, et al. Simulation on the compressed field reversed configuration with alpha particle self-heating[J]. Plasma Phys Control Fusion, 2019, 61: 075015. doi: 10.1088/1361-6587/ab1e84
    [19]
    Linerman M A, Velikovich A L. Distribution function and diffusion of alpha particles in DT fusion plasma[J]. J Plasma Phys, 1984, 31(3): 369-380. doi: 10.1017/S0022377800001719
    [20]
    Braginskii S I. Transport processes in a plasma; in Reviews of PlasmaPhysics[M]. New York: Springer, 1965: 205-316.
    [21]
    Nozachi K, Nishihara K. Thermonuclear reaction wave in high density plasma[J]. J Phys Soc Japan, 1977, 43(4): 1393-1399. doi: 10.1143/JPSJ.43.1393
    [22]
    赵小明, 孙奇志, 方东凡, 等. 反场构型等离子体中Grad-Shafranov方程数值解[J]. 物理学报, 2016, 65:185201. (Zhao Xiaoming, Sun Qizhi, Fang Dongfan, et al. Numerical solution of Grad-Shafranov equation in FRC plasma. Acta Physica Sinica, 2016, 65: 185201 doi: 10.7498/aps.65.185201
    [23]
    Li C G, Yang X J. Modeling and numerical analysis of a magneto-inertial fusion concept with the target created through FRC merging[J]. Phys Plasmas, 2016, 23: 102702. doi: 10.1063/1.4964367
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (1347) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return