Volume 31 Issue 12
Dec.  2019
Turn off MathJax
Article Contents
Shen Siqi, Tian Shunqiang, Zhang Qinglei, et al. Nonlinear optimization for longitudinal beam injection in diffraction-limited synchrotron light sources[J]. High Power Laser and Particle Beams, 2019, 31: 125101. doi: 10.11884/HPLPB201931.190196
Citation: Shen Siqi, Tian Shunqiang, Zhang Qinglei, et al. Nonlinear optimization for longitudinal beam injection in diffraction-limited synchrotron light sources[J]. High Power Laser and Particle Beams, 2019, 31: 125101. doi: 10.11884/HPLPB201931.190196

Nonlinear optimization for longitudinal beam injection in diffraction-limited synchrotron light sources

doi: 10.11884/HPLPB201931.190196
More Information
  • Author Bio:

    Shen Siqi (1991—), male, PhD student, majors in accelerator physics; shensiqi@sinap.ac.cn

  • Received Date: 2019-06-03
  • Rev Recd Date: 2019-09-07
  • Publish Date: 2019-12-01
  • Storage rings of the next generation synchrotron light sources have quite small dynamic apertures with which transverse beam injection can hardly be efficient. The longitudinal beam injection may be a solution to this problem. To apply a longer kicker pulse, it is necessary to increase time offset of the injected beam to the stored one by reducing RF frequency. The beam with a longer time offset will have a higher momentum deviation due to synchrotron motion, thus full injection of this method requires the storage ring to provide large enough energy acceptance and off-momentum dynamic aperture. A candidate lattice of the upgraded Shanghai Synchrotron Radiation Facility (SSRF-U) was used to nonlinearly optimize the longitudinal beam injection. With the optimal results of a series of RF frequencies, it is found that there is a critical RF frequency below which lowering frequency could not help to lengthen the kicker pulse in a given lattice. The beam injection into the SSRF-U storage ring was simulated and reached high efficiency with its critical RF frequency and optimal sextupole gradients.

  • loading
  • [1]
    Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21: 843-855. doi: 10.1107/S1600577514011515
    [2]
    Einfeld D, Plesko M, Schaper M. First multi-bend achromat lattice consideration[J]. Journal of Synchrotron Radiation, 2014, 21: 856-861. doi: 10.1107/S160057751401193X
    [3]
    Borland M, Decker G, Emery L, et al. Lattice design challenges for fourth-generation storage-ring light sources[J]. Journal of Synchrotron Radiation, 2014, 21: 912-936. doi: 10.1107/S1600577514015203
    [4]
    Li H H, Liu G M, Zhang W Z. The injection system of the SSRF storage ring[C]//Proceedings of EPAC08. 2008: 2076-2078.
    [5]
    Harada K, Kobayashi Y, Miyajima T, et al. New injection scheme using a pulsed quadrupole magnet in electron storage rings[J]. Physical Review Special Topics− Accelerators and Beams, 2007, 10: 123501. doi: 10.1103/PhysRevSTAB.10.123501
    [6]
    Takaki H, Nakamura N. Beam injection with a pulsed sextupole magnet in an electron storage ring[J]. Physical Review Special Topics−Accelerators and Beams, 2010, 13: 020705. doi: 10.1103/PhysRevSTAB.13.020705
    [7]
    Yamamoto N, Zen H, Hosaka M, et al. Beam injection with pulsed multipole magnet at UVSOR-III[J]. Nuclear Instruments and Methods in Physics Research A, 2014, 767: 26-33. doi: 10.1016/j.nima.2014.07.059
    [8]
    Borland M. Simulation of swap-out reliability for the advanced photon source upgrade[C]//Proceedings of NAPAC2016. 2016: 881-883.
    [9]
    Steier C, Anders A, Luo T, et al. On-axis swap-out R&D for ALS-U[C]//Proceedings of IPAC2017. 2017: 2821-2823,
    [10]
    Aiba M, Boge M, Marcellini F, et al. Longitudinal injection scheme using short pulse kicker for small aperture electron storage rings[J]. Physical Review Special Topics−Accelerators and Beams, 2015, 18: 020701. doi: 10.1103/PhysRevSTAB.18.020701
    [11]
    Hernandez A S, Aiba M. Investigation of the injection scheme for SLS 2.0[C]//Proceedings of IPAC2015. 2015: 1720-1723.
    [12]
    Jiang B C, Zhao Z T, Tian S Q, et al. Using a double-frequency RF system to facilitate on-axis beam accumulation in a storage ring[J]. Nuclear Instruments and Methods in Physics Research A, 2016, 814: 1-5. doi: 10.1016/j.nima.2016.01.024
    [13]
    Collier P. Synchrotron phase space injection into LEP[C]//Proceedings of PAC1995. 1995: 551-553.
    [14]
    Jiao J, Duan Z. Statistical analysis of the limitation of half integer resonances on the available momentum acceptance of the High Energy Photon Source[J]. Nuclear Instruments and Methods in Physics Research A, 2017, 841: 97-103. doi: 10.1016/j.nima.2016.10.037
    [15]
    Zhao Z T, Xu H J, Ding H. Commissioning of the Shanghai Light Source[C]//Proceedings of PAC09. 2009: 55-59.
    [16]
    Zhao Z T, Yin L X, Leng Y B, et al. Consideration on the future major upgrades of the SSRF storage ring[C]//Proceedings of IPAC2015. 2015: 1672-1674.
    [17]
    Tian S Q. Lattice design and optimization of the SSRF storage ring with super-bend[J]. Nuclear Science and Techniques, 2014, 25: 010102. doi: 10.13538/j.1001-8042/nst.25.010102
    [18]
    Terebilo A. Accelerator toolbox for MATLAB[R]. SLAC-PUB-8732, 2001.
    [19]
    Leemann S C, Andersson A, Eriksson M, et al. Beam dynamics and expected performance of Sweden’s new storage-ring light source: MAX IV[J]. Physical Review Special Topics−Accelerators and Beams, 2009, 12: 120701. doi: 10.1103/PhysRevSTAB.12.120701
    [20]
    Raimondi P. The ESRF low emittance upgrade[C]//Proceedings of IPAC2016. 2016: 2023-2027.
    [21]
    Xu G, Duan Z, Guo Y Y, et al. Recent physical studies for the HEPS project[C]//Proceedings of IPAC2016. 2016: 2886-2888.
    [22]
    Tian S Q, Zhang M Z, Zhang Q L, et al. Lattice design of the SSRF-U storage ring[C]//Proceedings of IPAC2015. 2015: 304-306.
    [23]
    Yu L H. Analysis of nonlinear dynamics by square matrix method[J]. Physical Review Accelerators and Beams, 2017, 20: 034001. doi: 10.1103/PhysRevAccelBeams.20.034001
    [24]
    Bengtsson J. On-line control of the nonlinear dynamics for synchrotrons[J]. Physical Review Special Topics−Accelerators and Beams, 2015, 18: 074002. doi: 10.1103/PhysRevSTAB.18.074002
    [25]
    Yang L Y, Li Y J, Guo W M, et al. Multiobjective optimization of dynamic aperture[J]. Physical Review Special Topics−Accelerators and Beams, 2011, 14: 054001. doi: 10.1103/PhysRevSTAB.14.054001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (869) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return