Volume 32 Issue 5
Feb.  2020
Turn off MathJax
Article Contents
Wang Yi, Li Jin, Li Qin, et al. Generation of sub-mm focal spot for intense-current accelerator utilizing spatial collimating restriction[J]. High Power Laser and Particle Beams, 2020, 32: 054002. doi: 10.11884/HPLPB202032.190166
Citation: Wang Yi, Li Jin, Li Qin, et al. Generation of sub-mm focal spot for intense-current accelerator utilizing spatial collimating restriction[J]. High Power Laser and Particle Beams, 2020, 32: 054002. doi: 10.11884/HPLPB202032.190166

Generation of sub-mm focal spot for intense-current accelerator utilizing spatial collimating restriction

doi: 10.11884/HPLPB202032.190166
  • Received Date: 2019-05-15
  • Rev Recd Date: 2020-02-01
  • Publish Date: 2020-02-10
  • Focal spot size is a key parameter for evaluating the resolving power of the accelerator. A reduction in the focal spot size can effectively improve the spatial resolution of the object. This work studies and designs collimator structures for spatial restriction, which help to reduce the geometry blur of imaging and thus obtain a smaller effective spot-size. The Monte Carlo method is applied to simulate the generation of the light source and the imaging process of the spatial restriction structures. The parameters of the light source with different collimator structures are analyzed, including the distribution and size of the effective focal spot, the angular distribution and the spectrum of the photons. Theoretical calculations show that an effective focal spot size with a sub-mm scale can be obtained by means of spatial restriction at the expense of a partial loss of the field-of-view and the exposure.

  • loading
  • [1]
    Boyd T J, Rogers B T, Tesche R R, et al. PHERMEX—A high-current electron accelerator for use in dynamic radiography[J]. Rev Sci Instrum, 1965, 36: 1401-1408. doi: 10.1063/1.1719343
    [2]
    Scarpetti R D, Boyd J K, Earley G G, et al. Upgrades to the LLNL flash X-ray induction linear accelerator (FXR)[C]//11th IEEE International Pulsed Power Conference — Digest of Technical Papers. 1997, 1/2: 597–602.
    [3]
    邓建军, 丁伯南, 王华岑, 等. “神龙一号”直线感应加速器物理设计[J]. 强激光与粒子束, 2003, 15(5):502-504. (Deng Jianjun, Ding Bonan, Wang Huacen, et al. , Physical design of the Dragon-I linear induction accelerator[J]. High Power Laser and Particle Beams, 2003, 15(5): 502-504
    [4]
    施将君. 高能闪光照相引论[M]. 北京: 国防工业出版社, 1997.

    Shi Jiangjun. Introduction of high-energy flash radiography[M]. Beijing: National Defence Industry Press, 1997
    [5]
    Briesmeister J F. MCNP – A general Monte Carlo N-particle transport code – Version 4C[R]. LA-13709-M, 2000.
    [6]
    Agostinelli S, Allison J, Amako K, et al. Geant4 – a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A – Accelerators Spectrometers Detectors and Associated Equipment, 2003, 506(3): 250-303.
    [7]
    Kawrakow I, Rogers D W O. The EGSncr code system: Monte Carlo simulation of electron and photon transport[R]. Ottawa: National Research Council of Canada, 2002.
    [8]
    王毅, 李勤, 代志勇. 蒙特卡罗模拟分析电子束发射度对照射量空间分布影响[J]. 强激光与粒子束, 2017, 29:065006. (Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation[J]. High Power Laser and Particle Beams, 2017, 29: 065006 doi: 10.11884/HPLPB201729.170029
    [9]
    Muller K H. Measurement and characterization of X-ray spot size[R]. LA-UR-89-1886, 1989.
    [10]
    Ekdahl C. Characterizing flash-radiography source spots[J]. Journal of the Optical Society of America A, 2011, 28(12): 2501-2509. doi: 10.1364/JOSAA.28.002501
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views (1112) PDF downloads(125) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return