Volume 32 Issue 6
May  2020
Turn off MathJax
Article Contents
Zhao Hailong, Wang Ganghua, Wang Qiang, et al. Preliminary exploration of MagLIF concept and feasibility analysis on PTS facility[J]. High Power Laser and Particle Beams, 2020, 32: 062002. doi: 10.11884/HPLPB202032.190352
Citation: Zhao Hailong, Wang Ganghua, Wang Qiang, et al. Preliminary exploration of MagLIF concept and feasibility analysis on PTS facility[J]. High Power Laser and Particle Beams, 2020, 32: 062002. doi: 10.11884/HPLPB202032.190352

Preliminary exploration of MagLIF concept and feasibility analysis on PTS facility

doi: 10.11884/HPLPB202032.190352
Funds:  National Natural Science Foundation of China (11205145, 11605189)
More Information
  • Author Bio:

    Zhao Hailong (1985—), male, PhD candidate, engaged in numerical simulation of Z-pinch and pulsed power system; ifp.zhaohailong@qq.com

  • Received Date: 2019-09-12
  • Rev Recd Date: 2020-02-13
  • Publish Date: 2020-05-12
  • Magnetized Liner Inertial Fusion (MagLIF) concept has promising potentials for future energy source (Phys.Plasmas, 2014, 21:072711), it is widely applicable to large-scale pulsed power generators such as the Primary Test Stand (PTS) facility (10 MA, 100 ns). In this context, we’ve developed a zero-dimensional (0D) MagLIF simulation code basing on magneto-hydrodynamic (MHD) equations and Deuterium-Tritium (DT) fusion models. Relationships between fusion products and initial setups (magnetic field Bz0, preheat temperature T0 and so on) are explored using this code, results show optimal parameters existing under given inputs, which are very helpful for future experimental designs. Specifically, according to our simulations, critical driving current (>21.2 MA) is essential for fuel (50∶50 DT) energy to reach breakeven, which infers that PTS facility may not be suitable for integrated MagLIF experiments. Series of calculations are performed to confirm this inference, and more practical aluminum liner experiments are proposed and designed.
  • loading
  • [1]
    Aymar R. The ITER project[J]. IEEE Trans Plasma Science, 1997, 6: 1187.
    [2]
    Shimomura Y, Spears W. Review of the ITER project[J]. IEEE Trans Plasma Science, 2004, 14: 1369.
    [3]
    Huang Chuanjun, Li Laifeng. Magnetic confinement fusion: A brief review[J]. Front Energy, 2018, 12: 305. doi: 10.1007/s11708-018-0539-1
    [4]
    Hurricane O A, Springer P T, Patel P K, et al. Approaching a burning plasma on the NIF[J]. Phys Plasmas, 2019, 26: 052704. doi: 10.1063/1.5087256
    [5]
    McCrory R L, Meyerhofer D D, Betti R, et al. Progress in direct-drive inertial confinement fusion[J]. Phys Plasmas, 2008, 15: 055503. doi: 10.1063/1.2837048
    [6]
    Mordecai D R, Meyerhofer1 D D, Betti R, et al. The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial[J]. Phys Plasmas, 1999, 6: 1690. doi: 10.1063/1.873427
    [7]
    Thio Y C F, Panarella E, Knupp C E, et al. Magnetized target fusion in a spheroidal geometry with standoff drivers[C]//The 2nd Conference on Current Trends in International Fusion Research. 1999: 113.
    [8]
    Parks P B. On the efficacy of imploding plasma liners for magnetized fusion target compression[J]. Phys Plasmas, 2008, 15: 062506. doi: 10.1063/1.2948346
    [9]
    Cassibry J T, Stanic M, Hsu S C, et al. Tendency of spherically imploding plasma liners formed by merging plasma jets to evolve toward spherical symmetry[J]. Phys Plasmas, 2012, 19: 052702. doi: 10.1063/1.4714606
    [10]
    Schoenberg K F, Siemon R E. Magnetized target fusion: A proof-of-principle research proposal[R]. LA-UR-98-2413,1998.
    [11]
    Kirkpatrick R C. Magnetized target fusion (MTF) principle status and international collaboration[C]//Latin America Workshop on Plasma Physics. 1998.
    [12]
    Lindemuth I R, Kirkpatrick R C. Parameter space for magnetized fuel targets in inertial confinement fusion[J]. Nucl Fusion, 1983, 23: 263. doi: 10.1088/0029-5515/23/3/001
    [13]
    Slutz S A, Herrmann M C, Vesey R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Phys Plasmas, 2010, 17: 056303. doi: 10.1063/1.3333505
    [14]
    Slutz S A, Roger A V. High-gain magnetized inertial fusion[J]. Phys Rev Lett, 2012, 108: 025003. doi: 10.1103/PhysRevLett.108.025003
    [15]
    McBride R D, Martin M R, Lemke R W, et al. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion[J]. Phys Plasmas, 2013, 20: 056309. doi: 10.1063/1.4803079
    [16]
    Gomez M R, Slutz S A, Sefkow A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion[J]. Phys Rev Lett, 2014, 113: 155003. doi: 10.1103/PhysRevLett.113.155003
    [17]
    Awe T J, Jennings C A, McBride R D, et al. Modified helix-like instability structure on imploding z-pinch liners that are preimposed with a uniform axial magnetic field[J]. Phys Plasmas, 2014, 21: 056303. doi: 10.1063/1.4872331
    [18]
    Sefkow A B, Slutz S A, Koning J M, et al. Design of magnetized liner inertial fusion experiments using the Z facility[J]. Phys Plasmas, 2014, 21: 072711. doi: 10.1063/1.4890298
    [19]
    McBride R D, Slutz S A. A semi-analytic model of magnetized liner inertial fusion[J]. Phys Plasmas, 2015, 22: 052708. doi: 10.1063/1.4918953
    [20]
    Feng Shuping, Li Hongtao, Xie Weiping, et al. Development of prototype module of Z-pinch primary test stand[J]. High Power Laser and Particle Beams, 2009, 21(3): 463-467.
    [21]
    Zhao Hailong, Deng Jianjun, Wang Ganghua, et al. Load optimal design for a primary test stand facility based on a zero-dimensional load model[J]. Chinese Phys B, 2011, 20: 105201. doi: 10.1088/1674-1056/20/10/105201
    [22]
    Deng Jianjun, Wang Meng, Xie Weiping, et al. Super-power repetitive Z-pinch driver for fusion-fission reactor[J]. High Power Laser and Particle Beams, 2014, 26: 100201. doi: 10.3788/HPLPB20142610.100201
    [23]
    Zhao Hailong, Zhang Hengdi, Wang Ganghua, et al. Design and verification of 1D magnetized linear inertial fusion simulation code[J]. High Power Laser and Particle Beams, 2017, 29: 072001. doi: 10.11884/HPLPB201729.170002
    [24]
    Freidberg J. Plasma Physics and fusion energy[M]. Beijing: Science Press, 2010.
    [25]
    Basko M M, Kemp A J, Meyer-ter-Vehn J. Ignition conditions for magnetized target fusion in cylindrical geometry[J]. Nuclear Fusion, 2000, 40: 59-68. doi: 10.1088/0029-5515/40/1/305
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(8)

    Article views (1838) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return