Volume 32 Issue 1
Dec.  2019
Turn off MathJax
Article Contents
Zhong Zheqiang, Zhang Bin. Conjugate rotation smoothing scheme for laser quad based on dual-frequency laser and spiral phase plate[J]. High Power Laser and Particle Beams, 2020, 32: 011012. doi: 10.11884/HPLPB202032.190454
Citation: Zhong Zheqiang, Zhang Bin. Conjugate rotation smoothing scheme for laser quad based on dual-frequency laser and spiral phase plate[J]. High Power Laser and Particle Beams, 2020, 32: 011012. doi: 10.11884/HPLPB202032.190454

Conjugate rotation smoothing scheme for laser quad based on dual-frequency laser and spiral phase plate

doi: 10.11884/HPLPB202032.190454
  • Received Date: 2019-11-29
  • Rev Recd Date: 2019-12-24
  • Publish Date: 2019-12-26
  • Conjugate rotation smoothing scheme for laser quad based on dual-frequency laser and spiral phase plate was proposed. The dual-frequency laser provides frequency shift among the beamlets, the spiral phase plates with same helical charge but opposite sign transform the beamlets into Laguerre-Gaussian beams, and the polarization control is applied to make these beamlets coherently superposed on the target plane. On this basis, the conjugate continuous phase plates are adopted to enable the beamlets with different central wavelength and orthogonal polarization form focal spots with rapid rotation. Moreover, the spatiotemporal focal spot of the laser quad looks like conjugate spin light because of the frequency beats. It is indicated that, the scheme enables the fine-scale speckles within the focal spot rotate in a period of a few picoseconds, and even exhibit different intensities and wavelengths at different time and different positions. Hence, the novel scheme can effectively smooth the irradiation uniformity of the laser quad and even has the potential to mitigate laser plasma interactions.
  • loading
  • [1]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [2]
    Haynam C A, Sacks R A, Moses E I, et al. National Ignition Facility laser performance status[J]. Appl Opt, 2007, 46(16): 3276-3303. doi: 10.1364/AO.46.003276
    [3]
    Néauport J, Ribeyre X, Daurios J, et al. Design and optical characterization of a large continuous phase plate for laser integration line and laser megajoule facilities[J]. Appl Opt, 2003, 42(13): 2377-2382. doi: 10.1364/AO.42.002377
    [4]
    Miyaji G, Miyanaga N, Urushihara S, et al. Three-directional spectral dispersion for smoothing of a laser irradiance profile[J]. Opt Lett, 2002, 27(9): 725-727. doi: 10.1364/OL.27.000725
    [5]
    Munro D H, Dixit S N, Langdon A B, et al. Polarization smoothing in a convergent beam[J]. Appl Opt, 2004, 43(36): 6639-6647. doi: 10.1364/AO.43.006639
    [6]
    Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. J. Appl Phys, 1989, 66(8): 3456-3462. doi: 10.1063/1.344101
    [7]
    Strozzi D J, Sepke S M, Bailey D S, et al. Inline modeling of cross-beam energy transfer and Raman scattering in NIF hohlraums[R]. Lawrence Livermore National Laboratory (LLNL), 2016.
    [8]
    Masson-Laborde P E, Monteil M C, Tassin V, et al. Laser plasma interaction on rugby hohlraum on the Omega Laser Facility: Comparisons between cylinder, rugby, and elliptical hohlraums[J]. Phys Plasmas, 2016, 23: 022703. doi: 10.1063/1.4941706
    [9]
    Montgomery D S. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion[J]. Phys Plasmas, 2016, 23: 055601. doi: 10.1063/1.4946016
    [10]
    Weng X, Zhong Z, Li J, et al. Filamentation of spatiotemporal smoothed focal spot in plasma by Beam Smoothing scheme[J]. Optics Commun, 2019, 436: 216-221. doi: 10.1016/j.optcom.2018.12.039
    [11]
    Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 1992, 45(11): 8185. doi: 10.1103/PhysRevA.45.8185
    [12]
    Fürhapter S, Jesacher A, Bernet S, et al. Spiral interferometry[J]. Opt Lett, 2005, 30(15): 1953-1955. doi: 10.1364/OL.30.001953
    [13]
    Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810. doi: 10.1038/nature01935
    [14]
    Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Opt Express, 2004, 12(22): 5448-5456. doi: 10.1364/OPEX.12.005448
    [15]
    Zhong Z, Yi M, Sui Z, et al. Ultrafast smoothing scheme for improving illumination uniformities of laser quads[J]. Opt Lett, 2018, 43(14): 3285-3288. doi: 10.1364/OL.43.003285
    [16]
    Zhong Z, Hou P, Zhang B. Radial smoothing for improving laser-beam irradiance uniformity[J]. Opt Lett, 2015, 40(24): 5850-5853. doi: 10.1364/OL.40.005850
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (1829) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return