Volume 32 Issue 1
Dec.  2019
Turn off MathJax
Article Contents
Liu Xinxing, Tian Zhen, Tang Yulong. NbSe2 nanoparticles mode-locked 2 μm thulium fiber laser[J]. High Power Laser and Particle Beams, 2020, 32: 011013. doi: 10.11884/HPLPB202032.190458
Citation: Liu Xinxing, Tian Zhen, Tang Yulong. NbSe2 nanoparticles mode-locked 2 μm thulium fiber laser[J]. High Power Laser and Particle Beams, 2020, 32: 011013. doi: 10.11884/HPLPB202032.190458

NbSe2 nanoparticles mode-locked 2 μm thulium fiber laser

doi: 10.11884/HPLPB202032.190458
  • Received Date: 2019-11-23
  • Rev Recd Date: 2019-12-30
  • Publish Date: 2019-12-26
  • High-repetition-rate laser pulses with large pulse energies have great application potential in various areas including telecommunications, sensing, material processing, etc. Here, we report the linear and nonlinear optical properties of solution-based transition-metal dichalcogenide NbSe2 nanoparticles, and at the same time its application to mode-locked 2 μm fiber laser. The linear absorption of the NbSe2 nanoparticles covers the near-infrared to the near mid-infrared regions, and decreases with increasing wavelength, showing a broadband operation potential. Nonlinear absorption measurement of the NbSe2 nanoparticle gives a modulation depth of 6.5% and saturable intensity of 19 MW·cm−2 at the wavelength of about 2 μm. The the NbSe2 nanoparticles were transferred onto a gold mirror to fabricate a saturable absorber, with which a mode-locked thulium fiber laser was constructed and harmonic mode-locking was achieved. The mode-locked laser provides pulse energy of 3.36 nJ, pulse duration of 1.48 ns and repetition rate of 50.66 MHz. The laser wavelength is centered at 1 910.8 nm with a spectral bandwidth of 5.8 nm. The realization of dissipative-soliton mode-locking in the 2 μm fiber laser with NbSe2 nanoparticles proves that NbSe2 nanoparticles are good modulators for pulse generation in the 2 μm spectral region, and the integratable solution based nanoparticles hvae the potential of being new broadband nonlinear light modulators.
  • loading
  • [1]
    Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics and Laser Technology, 2012, 44(7): 2095-2099. doi: 10.1016/j.optlastec.2012.03.020
    [2]
    Fried N M, Murray K E. High-power thulium fiber laser ablation of urinary tissues at 1.94 μm[J]. Journal of Endourology, 2005, 19(1): 25-31. doi: 10.1089/end.2005.19.25
    [3]
    Leindecker L, Marandi A, Byer R L, et al. Octave-spanning ultrafast OPO with 2.6-6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser[J]. Optics Express, 2012, 20(7): 7046-7053. doi: 10.1364/OE.20.007046
    [4]
    Gomes L A, Orsila L, Jouhti T, et al. Picosecond SESAM-based ytterbium mode-locked fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(1): 129-136. doi: 10.1109/JSTQE.2003.822918
    [5]
    Sobon G, Sotor J, Pasternak I, et al. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber[J]. Optics Express, 2013, 21(10): 127971-127976.
    [6]
    Meng Yafei, Li Yao, Xu Yongbing, et al. Carbon nanotube mode-locked thulium fiber laser with 200 nm tuning range[J]. Science Reports, 2017, 7: 45109. doi: 10.1038/srep45109
    [7]
    Luo Yongfeng, Zhou Yan, Tang Yulong, et al. Mode-locked Tm-doped fiber laser based on iron-doped carbon nitride nanosheets[J]. Laser Physics Letters, 2017, 14: 110002. doi: 10.1088/1612-202X/aa7d82
    [8]
    Sotor J, Sobon J, Kowalczyk M, et al. Ultrafast thulium-doped fiber laser mode locked with black phosphorus[J]. Optics Letters, 2015, 40(16): 3885-3888. doi: 10.1364/OL.40.003885
    [9]
    Luo Zhichao, Liu Meng, Liu Hao, et al. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber[J]. Optics Letters, 2013, 38(24): 5212-5215. doi: 10.1364/OL.38.005212
    [10]
    Girish S G, Min G J, Shin K Y, et al. Two-dimensional metallic niobium diselenide for sub-micrometer-thin antennas in wireless communication systems[J]. ACS Nano, 2019. doi: 10.1021/acsnano.9b06732
    [11]
    Zhou Kaizhe, Zhao Min, Chang Mengjie, et al. Size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets[J]. Small, 2014, 11(6): 694-701.
    [12]
    Komsa H P, Krasheninnikov A V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles[J]. Physical Review B, 2013, 88: 085318. doi: 10.1103/PhysRevB.88.085318
    [13]
    Chen Bohua, Zhang Xiaoyan, Wu Kan, et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Optics Express, 2015, 23(20): 26723-26737. doi: 10.1364/OE.23.026723
    [14]
    Cheng Chen, Liu Hongliang, Tan Yang, et al. Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide[J]. Optics Express, 2016, 24(10): 10385-10390. doi: 10.1364/OE.24.010385
    [15]
    Liu Xinxing, Zhang Shuaiyi, Yan Zhengyu, et al. WSe2 as a saturable absorber for a passively Q-switched Ho, Pr: LLF laser at 2.95 μm[J]. Optical Materials Express, 2018, 8(5): 1213-1220. doi: 10.1364/OME.8.001213
    [16]
    Huang Y H, Chen R S, Zhang J R, et al. Electronic transport in NbSe2 two-dimensional nanostructures: Semiconducting characteristics and photoconductivity[J]. Nanoscale, 2015, 7: 18964. doi: 10.1039/C5NR05430C
    [17]
    Guo Jiahao, Shi Yantao, Zhu Chao, et al. Cost-effective and morphology-controllable niobium diselenides for highly efficient counter electrodes of dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2013, 1: 11874. doi: 10.1039/c3ta12349a
    [18]
    Kumagai N, Tanno K. Kinetic and structural characteristics of 3R-niobium disulfide as a positive material for secondary lithium batteries[J]. Electrochimica Acta, 1991, 36: 935. doi: 10.1016/0013-4686(91)85297-K
    [19]
    Shi Yiyuan, Long Hui, Liu Shunxiang, et al. Ultrasmall 2D NbSe2 based quantum dots used for low threshold ultrafast lasers[J]. Journal of Materials Chemistry C, 2018, 6: 12638-12642. doi: 10.1039/C8TC04635B
    [20]
    Shi Yiyuan, Liu Wenjia, Lü Wei, et al. Passively Q-switched Er-doped fiber laser based on NbSe2 quantum dot saturable absorber[C]//Asia Communications and Photonics Conference. 2018.
    [21]
    Chong A, Buckley J, Renninger W, et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 2006, 14(21): 10095-10100. doi: 10.1364/OE.14.010095
    [22]
    Tian Zhen, Wu kan, Kong Lingchen, et al. Mode-locked thulium fiber laser with MoS2[J]. Laser Physics Letters, 2015, 12: 065104. doi: 10.1088/1612-2011/12/6/065104
    [23]
    Jackson S D. Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers[J]. Optics Communications, 2004, 230(1/3): 197-203.
    [24]
    Tang Y L, Xu J Q, Chen W, et al. 150-W Tm3+-doped fiber lasers with different cooling techniques and output couplings[J]. Chinese Physics Letters, 2010, 27: 104207. doi: 10.1088/0256-307X/27/10/104207
    [25]
    Tamura K, Ippen E P, Haus H A, et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser[J]. Optics Letters, 1993, 18: 1080-1082. doi: 10.1364/OL.18.001080
    [26]
    Zhang H, Lu S B, Zheng J, et al. Molybdenum disulfide(MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6): 7249-7260.
    [27]
    Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersion dielectric fibers. I. Anomalous dispersion[J]. Applied Physics Letters, 1973, 23: 142-144. doi: 10.1063/1.1654836
    [28]
    Huang Chongyuan, Wang Cong, Shang Wei, et al. Developing high energy dissipative soliton fiber lasers at 2 micron[J]. Science Reports, 2015, 5: 13680. doi: 10.1038/srep13680
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (2322) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return