Volume 32 Issue 1
Dec.  2019
Turn off MathJax
Article Contents
Zheng Wanguo, Li Ping, Zhang Rui, et al. Progress on laser precise control for high power laser facility[J]. High Power Laser and Particle Beams, 2020, 32: 011003. doi: 10.11884/HPLPB202032.190469
Citation: Zheng Wanguo, Li Ping, Zhang Rui, et al. Progress on laser precise control for high power laser facility[J]. High Power Laser and Particle Beams, 2020, 32: 011003. doi: 10.11884/HPLPB202032.190469

Progress on laser precise control for high power laser facility

doi: 10.11884/HPLPB202032.190469
  • Received Date: 2019-11-30
  • Rev Recd Date: 2019-12-23
  • Publish Date: 2019-12-26
  • Beam precise control is the basic requirement of Interial Confinement Fusion (ICF) research for laser facility. Its technical characteristics determine that it is a system project for laser facility. This paper introduces the important progress made by the Laser Fusion Research Center of Chinese Academy of Engineering Physics in the control of focal-plane irradiance, pulse precision shaping, beam near-field intensity and novel beam exploration in recent years.
  • loading
  • [1]
    Basov N G, Krohkin O H. The conditions of plasma heating by optical generation of radiation[C]//Proceedings of the 3rd International Congress on Quantum Electronics, 1963.
    [2]
    王淦昌. 利用大能量大功率的光激射器产生中子的建议[J]. 中国激光, 1987, 14(11):641-645. (Wang Ganchang. Suggestion of neutron generation with powerful lasers[J]. Chinese Journal of Lasers, 1987, 14(11): 641-645 doi: 10.3321/j.issn:0258-7025.1987.11.001
    [3]
    Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
    [4]
    Moses E, Wuest C R. The National Ignition Facility: status and plans for laser fusion and high-energy-density experimental studies[J]. Fusion Science and Technology, 2003, 43: 420. doi: 10.13182/FST43-420
    [5]
    André M L. The French Megajoule Laser Project (LMJ)[J]. Fusion Engineering and Design, 1999, 44(1/4): 43-49.
    [6]
    魏晓峰, 郑万国, 张小民. 中国高功率固体激光技术发展中的两次突破[J]. 物理, 2018, 47(2):73-83. (Wei Xiaofeng, Zheng Wanguo, Zhang Xiaomin. Two breakthroughs in the development of high power solid-state laser technology in China[J]. Physics, 2018, 47(2): 73-83 doi: 10.7693/wl20180202
    [7]
    马腾才. 等离子体物理原理[M]. 合肥: 中国科学技术大学出版社, 1988.

    Ma Tengcai. Principles of plasma physics[M]. Hefei: University of Science and Technology of China Press, 1988
    [8]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [9]
    Lindl J, Landen O, Edwards J, et al. Review of the National Ignition Campaign 2009-2012[J]. Physics of Plasmas, 2014, 21: 020501. doi: 10.1063/1.4865400
    [10]
    Wilcox R B, Behrendt W, Browning D F, et al. Fusion laser oscillator and pulse-forming system using integrated optics[C]//Proc of SPIE. 1993, 1870: 53-63.
    [11]
    Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency modulated light[J]. Journal of Applied Physics, 1989, 66(8): 3456-3462. doi: 10.1063/1.344101
    [12]
    Heebner J, Borden M, Miller P, et al. A programmable beam shaping system for tailoring the profile of high fluence laser beams[C]//Proc of SPIE. 2010, 7842: 40.
    [13]
    Lin Y, Kessler T J, Lawrence G N. Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance[J]. Optics Letters, 1996, 21(20): 1703-1705. doi: 10.1364/OL.21.001703
    [14]
    Regan S P, Marozas J A, Craxton R S, et al. Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams[J]. Journal of the Optical Society of America B Optical Physic, 2005, 22(5): 998-1002. doi: 10.1364/JOSAB.22.000998
    [15]
    Rothenberg J E. Polarization beam smoothing for inertial confinement fusion[J]. Journal of Applied Physics, 2000, 87(8): 3654-3662. doi: 10.1063/1.372395
    [16]
    Moody J D, Macgowan B J, Rothenberg J E, et al. Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma[J]. Physical Review Letters, 2001, 86(13): 2810-2813. doi: 10.1103/PhysRevLett.86.2810
    [17]
    Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
    [18]
    Zhang R, Jia H, Tian X, et al. Research of beam conditioning technologies using continuous phase plate, multi-FM smoothing by spectral dispersion and polarization smoothing[J]. Optics and Lasers in engineering, 2016, 85: 38-47. doi: 10.1016/j.optlaseng.2016.04.015
    [19]
    李平, 贾怀庭, 王芳, 等. 神光Ⅲ原型装置中连续相位板的应用位置分析[J]. 中国激光, 2009, 36(2):318-323. (Li Ping, Jia Huaiting, Wang Fang, et al. Analysis of continuous phase plates applying position for TIL facility[J]. Chinese Journal of Lasers, 2009, 36(2): 318-323
    [20]
    刘兰琴, 张颖, 耿远超, 等. 小宽带光谱色散匀滑光束传输特性研究[J]. 物理学报, 2014, 63:164201. (Liu Lanqin, Zhang Ying, Geng Yuanchao, et al. Propagation characteristics of small-bandwidth pulsed beams with smoothing by spectral dispersion in high power laser system[J]. Acta Physica Sinica, 2014, 63: 164201 doi: 10.7498/aps.63.164201
    [21]
    李平, 粟敬钦, 马驰, 等. 光谱色散匀滑对焦斑光强频谱的影响[J]. 物理学报, 2009, 58(9):6210-6215. (Li Ping, Su Jingqin, Ma Chi, et al. Effect of smoothing by spectral dispersion on the spatial spectrum of focal spot[J]. Acta Physics Sinica, 2009, 58(9): 6210-6215 doi: 10.3321/j.issn:1000-3290.2009.09.052
    [22]
    Zhang Rui, Su Jingqin, Yuan Haoyu, et al. Research of beam conditioning technologies on SG-III laser facility[C]//Proc of SPIE, 2014, 9293: 92930E.
    [23]
    Zhang R, Su J, Wang J, et al. Experimental research on the influences of smoothing by spectral dispersion on the Technical Integration Line[J]. Applied Optics, 2011, 50(5): 687-695. doi: 10.1364/AO.50.000687
    [24]
    Zheng W, Wei X, Zhu Q, et al. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter Radiat Extrem, 2017, 2: 243-255. doi: 10.1016/j.mre.2017.07.004
    [25]
    Hao L, Zhao Y, Yang D, et al. Analysis of stimulated Raman backscatter and stimulated Brillouin backscatter in experiments performed on SGIII prototype facility with a spectral analysis code[J]. Phys Plasmas, 2014, 21: 072705. doi: 10.1063/1.4890019
    [26]
    Lan K, Li Z, Xie X, et al. Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target[J]. Phys Rev E, 2017, 95: 031202. doi: 10.1103/PhysRevE.95.031202
    [27]
    Dewald E L, Glenzer S H, Landen O L, et al. First laser–plasma interaction and hohlraum experiments on the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2005, 47(12B): B405-B417. doi: 10.1088/0741-3335/47/12B/S29
    [28]
    郑天然, 张颖, 耿远超, 等. 基于集束多频调制的光谱色散匀滑技术[J]. 中国激光, 2017, 44:1205003. (Zheng Tianran, Zhang Ying, Geng Yuanchao, et al. Smoothing by spectral dispersion technology based on bundle multiple-frequency modulation[J]. Chinese Journal of Lasers, 2017, 44: 1205003
    [29]
    Jones O S, Speck D R, Williams W H, et al. The NIF’s power and energy ratings for ICF-shaped pulses[C]//Proc of SPIE. 1998, 3492: 49-54
    [30]
    Hu Dongxia, Dong Jun, Xu Dangpeng, et al. Generation and measurement of complex laser pulse shapes in the SG-III laser facility[J]. Chinese Optics Letters, 2015, 13: 041406. doi: 10.3788/COL201513.041406
    [31]
    Li Ping, Wang Wei, Jin Sai, et al. The shaped pulses control and operation on the SG-III prototype facility[J]. Laser physics, 2018, 28: 045004. doi: 10.1088/1555-6611/aaa9dc
    [32]
    Hocquet S, Penninckx D, Gleyze J F, et al. Nonsinusoidal phase modulations for high-power laser performance control: stimulated Brillouin scattering and FM-to-AM conversion[J]. Applied Optics, 2010, 49(7): 1104-1115. doi: 10.1364/AO.49.001104
    [33]
    Browning D F, Rothenberg J E, Wilcox R B. The issue of FM to AM conversion on the National Ignition Facility[C]//Proceedings of SPIE. 1999, 3492.
    [34]
    Hocquet S, Penninckx D, Bordenave E, et al. FM-to-AM conversion in high-power lasers[J]. Applied Optics, 2008, 47(18): 3338-3349. doi: 10.1364/AO.47.003338
    [35]
    Xu D, Wang J, Li M, et al. Weak etalon effect in wave plates can introduce significant FM-to-AM modulations in complex laser systems[J]. Optics Express, 2010, 18(7): 6621-6627. doi: 10.1364/OE.18.006621
    [36]
    Li Rao, Fan Wei, Jiang Youen, et al. Tunable compensation of GVD-induced FM–AM conversion in the front end of high-power lasers[J]. Appl Opt, 2017, 56(4): 993-998. doi: 10.1364/AO.56.000993
    [37]
    Li Ping, Wang Wei, Su Jingqin, et al. Analysis on FM-to-AM conversion of SSD beam induced by etalon effect in a high-power laser system[J]. High Power Laser Science and Engineering, 2019, 7(2).
    [38]
    Bagnoud V, Zuegel J D. Independent phase and amplitude control of a laser beam by use of a single-phase-only spatial light modulator[J]. Optics Letters, 2004, 29(3): 295-297. doi: 10.1364/OL.29.000295
    [39]
    Bespalov V I, Talanov VI. Filamentary structure of light beams in nonlinear liquids[J]. JETP Lett, 1966, 3(12): 307-310.
    [40]
    Campillo A J, Shapiro S L, Suydam B R. Periodic breakup of optical beams due to self-focusing[J]. Applied Physics Letters, 1974, 23(11): 628-630.
    [41]
    Jokipii J R, Marburger J. Homogeneity requirements for minimizing self-focusing damage by strong electromagnetic waves[J]. Applied Physics Letters, 1974, 23(12): 696-698.
    [42]
    Jia Huaiting, Xu Bing, Wang Fang, et al. Small-scale self-focusing in a tapered optical beam[J]. Applied Optics, 2012, 51(25): 6089-6094. doi: 10.1364/AO.51.006089
    [43]
    Wen Shuangchun, Fan Dianyuan. Small-scale self-focusing of intense laser beams in the presence of vector effect[J]. Chin Phys Lett, 2000, 17(10): 731-733. doi: 10.1088/0256-307X/17/10/011
    [44]
    Parham T G, Azevedo S, Chang J, et al. Large aperture optics performance. 2009, LLNL-TR-410955.
    [45]
    Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 2016, 69(1): 146-249. doi: 10.13182/FST15-139
    [46]
    周丽丹, 贾怀庭, 韩伟, 等. 复合波长强激光小尺度自聚焦的理论研究[J]. 高能量密度科学技术, 2016, 2(4):11-17. (Zhou Lidan, Jia Huaiting, Han Wei, et al. Theoretical study on small-scale self-focusing of multi-wavelength beams[J]. High Energy Density Science and Technology, 2016, 2(4): 11-17
    [47]
    Hunt J T, Manes K R, Renard P A. Hot images from obscurations[J]. Appl Opt, 1993, 32: 5973-5982. doi: 10.1364/AO.32.005973
    [48]
    Wang Y W, Wen S C, Zhang L F, et al. Obscuration size dependence of hot image in laser beam through a Kerr medium slab with gain and loss[J]. Appl Opt, 2008, 47(8): 1152-1163. doi: 10.1364/AO.47.001152
    [49]
    Millerd J E, Brock N J, Hayes J B, et al. Modern approaches in phase measuring metrology [C]//Proc of SPIE. 2005, 5856: 13-22.
    [50]
    Ravizza F L, Nostrand M C, Kegelmeyer L M, et al. Process for rapid detection of fratricidal defects on optics using Linescan Phase Differential Imaging [R]. LLNL-PROC-420837, 2009.
    [51]
    李平, 韩伟, 王伟, 等. 关联“热像”特性的缺陷带通成像检测技术[J]. 光学学报, 2017, 37:0914004. (Li Ping, Han Wei, Wang Wei, et al. Defect inspection by band-pass imaging related to hot image property[J]. Acta Optica Sinica, 2017, 37: 0914004
    [52]
    杨冬, 李志超, 李三伟, 等. 间接驱动惯性约束聚变中的激光等离子体不稳定性[J]. 中国科学, 2018, 48:065203. (Yang Dong, Li Zhichao, Li Sanwei, et al. Laser plasma instability in indirect-drive inertial confinement fusion[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48: 065203
    [53]
    Li Ping, Jin Sai, Zhao Runchang, et al. The special shaped laser spot for driving indirect-drive hohlraum with multi-beam incidence[J]. High Power Laser Science and Engineering, 2017, 5(3): 49-54.
    [54]
    李平, 马驰, 粟敬钦, 等. 基于焦斑空间频谱控制的连续相位板设计[J]. 强激光与粒子束, 2008, 20(7):1114-1118. (Li Ping, Ma Chi, Su Jingqin, et al. Design of continuous phase plates for controlling spatial spectrum of focal spot[J]. High Power Laser and Particle Beams, 2008, 20(7): 1114-1118
    [55]
    耿远超, 刘兰琴, 王文义, 等. 利用晶体相位板同时实现焦斑整形和偏振匀滑[J]. 物理学报, 2013, 62(14):145201. (Geng Yuanchao, Liu Lanqin, Wang Wenyi, et al. A new method of simultaneous focal spot shaping and polarization smoothing using crystal phase plate[J]. Acta Physica Sinica, 2013, 62(14): 145201 doi: 10.7498/aps.62.145201
    [56]
    李平, 王伟, 赵润昌, 等. 基于焦斑空间频率全域优化的偏振匀设计[J]. 物理学报, 2014, 63(21):215202. (Li Ping, Wang Wei, Zhao Runchang, et al. Polarization smoothing design for improving the whole spatial frequency at focal spot[J]. Acta Physica Sinica, 2014, 63(21): 215202 doi: 10.7498/aps.63.215202
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)

    Article views (3191) PDF downloads(245) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return