Volume 32 Issue 11
Sep.  2020
Turn off MathJax
Article Contents
Hu Xin, Li Jin, Liu Shenye, et al. State of the art and future prospective of high performance streak cameras for laser fusion[J]. High Power Laser and Particle Beams, 2020, 32: 112005. doi: 10.11884/HPLPB202032.200109
Citation: Hu Xin, Li Jin, Liu Shenye, et al. State of the art and future prospective of high performance streak cameras for laser fusion[J]. High Power Laser and Particle Beams, 2020, 32: 112005. doi: 10.11884/HPLPB202032.200109

State of the art and future prospective of high performance streak cameras for laser fusion

doi: 10.11884/HPLPB202032.200109
  • Received Date: 2020-05-10
  • Rev Recd Date: 2020-07-04
  • Publish Date: 2020-09-13
  • The streak cameras have very important applications in Inertial Confinement Fusion (ICF), including x-ray streak cameras and optical streak cameras. At present, they are still the core diagnostic devices with the highest temporal resolution in this field. This paper introduces the performance and characteristics of two main types of the streak cameras widely used in the field of laser fusion both domestic and international. They are equipped with coaxial electrode double-focus electron optics streak tube and bilamellar electron optics streak tube respectively. In terms of specifications of streak camera, the criteria of dynamic range of streak camera are emphasized, the dynamic range data of today's international high performance streak cameras are presented. The paper also introduces several important research progresses in the development of streak camera technologies, including advanced backlighting ultraviolet fiducial system, neutron radiation tolerant device and gated cathode technology.
  • loading
  • [1]
    Wang Feng, Jiang Shaoen, Ding Yongkun, et al. Recent diagnostic developments at the 100 kJ-level laser facility in China[J]. Matter and Radiation at Extremes, 2020, 4: 035201.
    [2]
    Sibbett W, Niu H B, Baggs M R. Photochron Ⅳ subpicosecond streak image tube[J]. Rev Sci Instrum, 1982, 53(6): 758-761. doi: 10.1063/1.1137058
    [3]
    Niu Lihong, Yang Qinlao, Niu Hanben, et al. A wide dynamic range X-ray streak camera system[J]. Rev Sci Instrum, 2008, 79: 023103. doi: 10.1063/1.2839025
    [4]
    Opachich Y P, Kalantar D H, MacPhee A G, et al. High performance imaging streak camera for the National Ignition Facility[J]. Rev Sci Instrum, 2012, 83: 125105. doi: 10.1063/1.4769753
    [5]
    Zuber C, Bazzoli S, Brunel P, et al. Performance of Laser Megajoule’s X-ray streak camera[J]. Rev Sci Instrum, 2016, 87: 11E303. doi: 10.1063/1.4959165
    [6]
    MacPhee A G, Dymoke-Bradshaw A K L, Hares J D, et al. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak camera[J]. Rev Sci Instrum, 2016, 87: 11E202. doi: 10.1063/1.4960376
    [7]
    Mens A, Dalmasso J M, Sauneuf R, et al. C 850X picosecond high resolution streak camera[C]//Proc of SPIE. 1991, 1358: 316-328.
    [8]
    Jaanimagi P A, Mens A, Rebuffie J C, et al. Photoelectron throughput in streak tubes[C]// Proc of SPIE. 1995, 2549: 62-70.
    [9]
    Bonté C, Harmand M, Dorchies F, et al. High dynamic range streak camera for subpicosecond time-resolved X-ray spectroscopy[J]. Rev Sci Instrum, 2007, 78: 043503. doi: 10.1063/1.2720718
    [10]
    Opachich Y P, Palmer N, Homoelle D, et al. X-ray streak camera cathode development and timing accuracy of the 4ω ultraviolet fiducial system at the National Ignition Facility[J]. Rev Sci Instrum, 2012, 83: 10E123. doi: 10.1063/1.4732855
    [11]
    Hatch B, Palmer N, Ayers S, et al. Performance and operational upgrades of X-ray streak camera photocathode assemblies at NIF[C]//Proc of SPIE. 2014: 92110H.
    [12]
    Kimbrough J R, Bella P M, Datte P S, et al. Characterization of a megapixel CMOS charge dump and read camera[C]//Proc of SPIE. 2013: 88500A.
    [13]
    Carpenter A C, Dayton M, Kimbrough J, et al. Single line of sight CMOS radiation tolerant camera system design overview[C]//Proc of SPIE. 2016: 99660H.
    [14]
    Nagel S R, Carpenter A C, Park J, et al. The dilation aided single-line-of-sight X-ray camera for the National Ignition Facility: Characterization and fielding[J]. Rev Sci Instrum, 2018, 89: 10G125. doi: 10.1063/1.5038671
    [15]
    Datte P, James G, Celliers P, et al. Gated photocathode design for the P510 electron tube used in the National Ignition Facility (NIF) optical streak cameras[C] //Proc of SPIE. 2015: 95910D.
    [16]
    Beck T, Zuber C, Aubert D, et al. Recent advances in the development of X-ray cameras inserted inside a pressurized box for LMJ plasma diagnostics[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2867-2872. doi: 10.1109/TPS.2010.2058868
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(2)

    Article views (1639) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return