Volume 32 Issue 9
Aug.  2020
Turn off MathJax
Article Contents
Chen Bolun, Yang Zhenghua, Hu Xin, et al. Implosion ablated convergence measurement on Shenguang laser facilities[J]. High Power Laser and Particle Beams, 2020, 32: 092010. doi: 10.11884/HPLPB202032.200111
Citation: Chen Bolun, Yang Zhenghua, Hu Xin, et al. Implosion ablated convergence measurement on Shenguang laser facilities[J]. High Power Laser and Particle Beams, 2020, 32: 092010. doi: 10.11884/HPLPB202032.200111

Implosion ablated convergence measurement on Shenguang laser facilities

doi: 10.11884/HPLPB202032.200111
  • Received Date: 2020-05-08
  • Rev Recd Date: 2020-07-07
  • Publish Date: 2020-08-15
  • For ignition and high fusion gain, it’s the key issue to achieve high implosion velocity in inertial confinement fusion. The important implosion dynamics quantities like implosion velocity and residual mass can be diagnosed by implosion ablated convergence measurement. The measured results will be used to modify the point design, optimizing the ablator materials, thickness and laser pulse profiles. In recent years, we demonstrated the conventional implosion ablated convergence measurement on Shenguang laser facilities with the slit imaging technique. The high spatial resolution monochromatic imaging technique based on the spherically bent crystal was developed and used for the implosion ablated convergence measurement. With the continuing improvements of the imaging system and the modification of the diagnostics, a high spatial resolution implosion trajectory diagnosis has been implemented. The implosion velocities are measured with high precision while the uncertainties are not greater than 2.1%.
  • loading
  • [1]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [2]
    Haan S W, Lindl J D, Callahan D A, et al. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility[J]. Phys Plasmas, 2011, 18: 051001. doi: 10.1063/1.3592169
    [3]
    Herrmann M, Tabak M, Lindl J. A generalized scaling law for the ignition energy of inertial confinement fusion capsules[J]. Nucl Fusion, 2001, 41(1): 99-111. doi: 10.1088/0029-5515/41/1/308
    [4]
    Clark D S, Haan S W, Salmonson J D. Robustness studies of ignition targets for the National Ignition Facility in two dimensions[J]. Phys Plasmas, 2008, 15: 056305. doi: 10.1063/1.2890123
    [5]
    Saillard Y. Acceleration and deceleration model of indirect drive ICF capsules[J]. Nucl Fusion, 2006, 46(12): 1017-1035. doi: 10.1088/0029-5515/46/12/005
    [6]
    Hammel B, Haan S, Clark D, et al. High-mode Rayleigh-Taylor growth in NIF ignition capsules[J]. High Energy Density Phys, 2010, 6(2): 171-178. doi: 10.1016/j.hedp.2009.12.005
    [7]
    Clark D S, Haan S W, Cook A W, et al. Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs[J]. Phys Plasmas, 2011, 18: 082701. doi: 10.1063/1.3609834
    [8]
    Clark D S, Haan S W, Hammel B A, et al. Plastic ablator ignition capsule design for the National Ignition Facility[J]. Phys Plasmas, 2010, 17: 052703. doi: 10.1063/1.3403293
    [9]
    Landen O L, Edwards J, Haan S W, et al. Capsule implosion optimization during the indirect-drive National Ignition Campaign[J]. Phys Plasmas, 2011, 18: 051002. doi: 10.1063/1.3592170
    [10]
    Chen Bolun, Yang Zhenghua, Wei Minxi, et al. Implosion dynamics measurements by monochromatic X-ray radiography in inertial confinement fusion[J]. Phys Plasmas, 2014, 21: 122705. doi: 10.1063/1.4903336
    [11]
    Hicks D G, Spears B K, Braun D G, et al. Convergent ablator performance measurements[J]. Phys Plasmas, 2010, 17: 102703. doi: 10.1063/1.3486536
    [12]
    Landen O L, Boehly T R, Bradley D K, et al. Capsule performance optimization in the National Ignition Campaign[J]. Phys Plasmas, 2010, 17: 056301. doi: 10.1063/1.3298882
    [13]
    Lindl J, Landen O, Edwards J, et al. Review of the National Ignition Campaign 2009-2012[J]. Phys Plasmas, 2014, 21: 020501. doi: 10.1063/1.4865400
    [14]
    蒲昱东, 黄天晅, 缪文勇, 等. 间接驱动内爆物理实验研究进展[J]. 中国科学: 物理学 力学 天文学, 2018, 68:065204. (Pu Yudong, Huang Tianxuan, Miao Wenyong, et al. Progress of indirectly driven implosion experiments[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2018, 68: 065204
    [15]
    Aglitskiy Y, Lehecka T, Obenschain S, et al. High-resolution monochromatic X-ray imaging system based on spherically bent crystals[J]. Applied Optics, 1998, 37(22): 5253-5261. doi: 10.1364/AO.37.005253
    [16]
    陈伯伦, 韦敏习, 杨正华, 等. 球面弯晶的背光成像特性[J]. 强激光与粒子束, 2013, 25(3):641-645. (Chen Bolun, Wei Minxi, Yang Zhenghua, et al. Character of backlight imaging based on spherically bent crystal[J]. High Power Laser and Particle Beams, 2013, 25(3): 641-645 doi: 10.3788/HPLPB20132503.0641
    [17]
    陈伯伦, 杨正华, 韦敏习, 等. 神光II激光装置X射线高分辨单色成像技术[J]. 强激光与粒子束, 2013, 25(12):3119-3122. (Chen Bolun, Yang Zhenghua, Wei Minxi, et al. High-resolution monochromatic X-ray imaging techniques applied to Shenguang II laser facility[J]. High Power Laser and Particle Beams, 2013, 25(12): 3119-3122 doi: 10.3788/HPLPB20132512.3119
    [18]
    Hicks D G, Meezan N B, Dewald E L, et al. Implosion dynamics measurements at the National Ignition Facility[J]. Phys Plasmas, 2012, 19: 122702. doi: 10.1063/1.4769268
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (1069) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return