Volume 32 Issue 11
Sep.  2020
Turn off MathJax
Article Contents
Sun Ao, Shang Wanli, Yang Guohong, et al. Study on X-ray line emission diffraction in inertial confinement fusion and its recent progress[J]. High Power Laser and Particle Beams, 2020, 32: 112008. doi: 10.11884/HPLPB202032.200129
Citation: Sun Ao, Shang Wanli, Yang Guohong, et al. Study on X-ray line emission diffraction in inertial confinement fusion and its recent progress[J]. High Power Laser and Particle Beams, 2020, 32: 112008. doi: 10.11884/HPLPB202032.200129

Study on X-ray line emission diffraction in inertial confinement fusion and its recent progress

doi: 10.11884/HPLPB202032.200129
  • Received Date: 2020-05-17
  • Rev Recd Date: 2020-07-13
  • Publish Date: 2020-09-13
  • This paper introduces the relationship between X-ray line emission diagnosis and various physical quantities in the study of inertial confinement fusion, and briefly explains the diagnosis method and principle of X-ray crystal spectrometer. For different types of diagnosis, it introduces the functions and principles of different commonly used types of diffraction crystals. In addition, it introduces a new type of X-ray diagnostic method of multi-cone curved crystals, which has high light collection efficiency and at the same time ensures the delicate coupling of the back-end receiving device and reduces aberrations. Based on the study of the diffraction characteristics of the multi-cone curved crystal, X-Chase, an X-ray arbitrary surface crystal diffraction tracking simulation software, was developed. At the same time, the multi-cone crystal of H and He line emissions on the SG laser facility is utilized to demonstrate the code functions. The numerical simulation results show that the variable cone crystal has a good focusing ability.
  • loading
  • [1]
    温树槐, 丁永坤. 激光惯性约束聚变诊断学[M]. 北京: 国防工业出版社, 2012: 200-205.

    Wen Shuhuai, Ding Yongkun. Laser inertial confinement fusion diagnostics[M]. Beijing: National Defense Industry Press, 2012: 200-205
    [2]
    Basov N G, Danilychev V A, Glotov E P. Theoretical investigation of promising methods of improving the energy characteristics of CW industrial electron-beam-controlled lasers[J]. Journal of Soviet Laser Research, 1984, 5: 647-666.
    [3]
    Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
    [4]
    Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491. doi: 10.1063/1.1578638
    [5]
    Champeney D C, Fuoss R M. Fourier transforms and their physical applications[J]. Physics Today, 1973, 26(10): 57. doi: 10.1063/1.3128283
    [6]
    James R W. The dynamical theory of X-ray diffraction[J]. Solid State Physics, 1963, 15: 53-220. doi: 10.1016/S0081-1947(08)60592-5
    [7]
    Wittry D B, Barbi N C. X-ray crystal spectrometers and monochromators in microanalysis[J]. Microscopy and Microanalysis, 2001, 7(2): 124-141. doi: 10.1007/S100050010080
    [8]
    Nielsen J A, McMorrow D. Elements of modern X-ray physics[M]. London: John Wiley & Sons, 2011: 207-230.
    [9]
    Sanchez del Rio M, Bernstorff S, Savoia A, et al. A conceptual model for ray tracing calculations with mosaic crystals[J]. Review of Scientific Instrument, 1992, 63: 932-935. doi: 10.1063/1.1143784
    [10]
    Gambaccini M, Taibi A, Del Guerra A, et al. Small-field imaging properties of narrow energy band X-ray beams for mammography[C]// IEEE Nuclear Science Symposium and Medical Imaging Conference Record. 1995, 3: 1388-1391.
    [11]
    Sanchez del Rio M, Ferrero C, Mocella V. Computer simulation of bent perfect crystal diffraction profiles[C]//Proc of SPIE. 1997, 3151: 312-323.
    [12]
    Honkanen A P, Ferrero C, Guigayb J P, et al. A finite-element approach to dynamical diffraction problems in reflection geometry[J]. Journal of Applied Crystallography, 2018, 51: 514-525. doi: 10.1107/S1600576718001930
    [13]
    Freund A K. Mosaic crystals monochromators for synchrotron radiation instrumentation[J]. Nucl Instr and Met, 1988, A266: 461-466.
    [14]
    Koppel L N. Active-recording X-ray crystal spectrometer for laser-induced plasmas[J]. Review of Scientific Instrument, 1976, 47: 1109-1112. doi: 10.1063/1.1134826
    [15]
    Barnsley R, Peacock N J, Dunn J, et al. Versatile high resolution crystal spectrometer with X-ray charge coupled device detector[J]. Review of Scientific Instrument, 2003, 74: 2388-2397. doi: 10.1063/1.1533105
    [16]
    Johansson T. A novel precise focusing X-ray Spectrometer[J]. Journal of Physics, 1993, 82(7/8): 507-528.
    [17]
    Yaakobi B, Turner R E, Schnopper H W, et al. Focusing X-ray spectrograph for laser fusion experiments[J]. Review of Scientific Instrument, 1979, 50: 1609-1611. doi: 10.1063/1.1135776
    [18]
    Hall T A. A focusing X-ray crystal spectrograph[J]. Journal of Physics E Scientific Instruments, 2000, 17(2): 110.
    [19]
    Morishita K, Hayashi K, Nakajima K. One-shot spectrometer for several elements using an integrated conical crystal analyzer[J]. Review of Scientific Instrument, 2012, 83: 013112. doi: 10.1063/1.3677326
    [20]
    Bitter M, Hill K W, Gao L, et al. A multi-cone X-ray imaging Bragg crystal spectrometer[J]. Review of Scientific Instrument, 2016, 87: 11E333. doi: 10.1063/1.4960537
    [21]
    Del Río M S, Dejus R J. XOP v2. 4: Recent developments of the X-ray optics software toolkit[C]//Proc of SPIE. 2011: 814115.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views (1731) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return