Volume 32 Issue 11
Sep.  2020
Turn off MathJax
Article Contents
Wang Feng, Zhang Xing, Li Yulong, et al. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 112002. doi: 10.11884/HPLPB202032.200136
Citation: Wang Feng, Zhang Xing, Li Yulong, et al. Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 2020, 32: 112002. doi: 10.11884/HPLPB202032.200136

Progress in high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion

doi: 10.11884/HPLPB202032.200136
  • Received Date: 2020-05-19
  • Rev Recd Date: 2020-07-10
  • Publish Date: 2020-09-13
  • This article reviews the latest developments of high time- and space-resolving diagnostic technique for laser-driven inertial confinement fusion (ICF) in China. Focusing on the needs of hot spot diagnosis with temporal resolution better than 10 ps, spatial resolution better than 10 μm, and energy range of 10−30 keV, we introduce recent progress in optical, X-ray, and nuclear diagnostics, as well as computational imaging. In optical section, we introduce two diagnostics based on the pump detection technique: all-optical scanning, with temporal resolution up to 200 fs, and all-optical framing, with temporal and spatial resolution up to 5 ps and 5 μm respectively. Since the main components are optical, these systems have great potentials to be applied in the strong electromagnetic, ionizing environment of future ICF research. In X-ray section, we introduce a recently developed high-resolution kirkpatrick-Baez (KB) microscope, which adopts the STTS (S and T represent sagittal and tangential directions respectively) configuration and improves the spatial resolution to 3 μm, meeting the current requirements. Besides, we also discuss a developing technology—the drift tube technology, with temporal resolution up to 10 ps. In nuclear section, we mainly introduce the high-resolution recording system of the neutron imaging, with spatial resolution up to 20−25 μm, as well as the progress in the corresponding aiming technique. In addition, we introduce computational imaging, which is a brand new branch attracting growing attention in ICF field. We also emphasize the three dimensional light field imaging technique and compressed ultrafast photography (CUP) technique, and propose their possible applications in ICF field.
  • loading
  • [1]
    Hurricane O A, Callahan D A, Casey D T, et al. Inertially confined fusion plasmas dominated by alpha-particle self-heating[J]. Nature Physics, 2016, 12: 800-806. doi: 10.1038/nphys3720
    [2]
    Meezan N B, Edwards M J, Hurricane O A, et al. Indirect drive ignition at the National Ignition Facility[J]. Plasma Physics and Controlled Fusion, 2017, 59: 014021. doi: 10.1088/0741-3335/59/1/014021
    [3]
    Kline J L, Batha S H, Benedetti L R, et al. Progress of indirect drive inertial confinement fusion in the United States[J]. Nuclear Fusion, 2019, 59: 112018. doi: 10.1088/1741-4326/ab1ecf
    [4]
    Clark D S, Weber C R, Milovich J L, et al. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility[J]. Physics of Plasmas, 2016, 23: 056302. doi: 10.1063/1.4943527
    [5]
    Gao Liang, Liang Jinyang, Li Chiye, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 2014, 516: 74-77. doi: 10.1038/nature14005
    [6]
    Engelhorn K, Hilsabeck T J, Kilkenny J, et al. Sub-nanosecond single line-of-sight (SLOS) X-ray imagers (invited)[J]. Review of Scientific Instruments, 2018, 89: 10G123. doi: 10.1063/1.5039648
    [7]
    Theobald W, Sorce C, Bedzyk M, et al. The single-line-of-sight, time-resolved X-ray imager diagnostic on OMEGA[J]. Review of Scientific Instruments, 2018, 89: 10G117. doi: 10.1063/1.5036767
    [8]
    Nagel S R, Hilsabeck T J, Bell P M, et al. Investigating high speed phenomena in laser plasma interactions using dilation X-ray imager[J]. Review of Scientific Instruments, 2014, 85: 11E504. doi: 10.1063/1.4890396
    [9]
    Hilsabeck T J, Nagel A R, Hares J D, et.al. Picosecond imaging of inertial confinement fusion plasmas using electron pulse-dilation[C]// Proc of SPIE.2017: 1032805.
    [10]
    Nakagawa K, Iwasaki A, Oishi Y, et al. Sequentially timed all-optical mapping photography (STAMP)[J]. Nature Photonics, 2014, 8(9): 695-700. doi: 10.1038/nphoton.2014.163
    [11]
    Pickworth L A, McCarville T, Decker T, et al. A Kirkpatrick-Baez microscope for the National Ignition Facility[J]. Review of Scientific Instruments, 2014, 85: 11D611. doi: 10.1063/1.4886433
    [12]
    Pickworth L A, Ayers J, Bell P, et al. The National Ignition Facility modular Kirkpatrick-Baez microscope[J]. Review of Scientific Instruments, 2016, 87: 11E316. doi: 10.1063/1.4960417
    [13]
    Marshall F J, Bahr R E, Goncharov V N, et al. A framed, 16-image Kirkpatrick–Baez X-ray microscope[J]. Review of Scientific Instruments, 2017, 88: 093702. doi: 10.1063/1.5000737
    [14]
    Rosch R, Trosseille C, Caillaud T, et al. First set of gated X-ray imaging diagnostics for the Laser Megajoule facility[J]. Review of Scientific Instruments, 2016, 87: 033706. doi: 10.1063/1.4942930
    [15]
    Zhang X, Chen Z, Li Y, et al. A four-channels reflective Kirkpatrick-Baez microscope for the hot spot diagnostic in the 100 kJ laser driven inertial confinement fusion in China[J]. J Instrum, 2019, 14: C11010. doi: 10.1088/1748-0221/14/11/C11010
    [16]
    Yaran, L i, Baozhong, et al. Development of an X-ray eight-image Kirkpatrick-Baez diagnostic system for China's laser fusion facility[J]. Applied Optics, 2017, 56: 3311-3318. doi: 10.1364/AO.56.003311
    [17]
    Xie Q, Mu B, Li Y, et al. Development of high resolution dual-energy KBA microscope with large field of view for RT-instability diagnostics at SG-III facility[J]. Optics Express, 2017, 25(3): 2608-2617. doi: 10.1364/OE.25.002608
    [18]
    Pikuz T A, Faenov A Y, Skobelev I Y, et al. Highly efficient X-ray imaging and backlighting schemes based on spherically bent crystals[C]// Proc of SPIE. 2004: 5196: 362-374.
    [19]
    Aglitskiy Y, Lehecka T, Obenschain S, et al. High-resolution monochromatic X-ray imaging system based on spherically bent crystals[J]. Applied Optics, 1998, 37(22): 5253-5261. doi: 10.1364/AO.37.005253
    [20]
    陈伯伦, 韦敏习, 杨正华, 等. 球面弯晶的背光成像特性[J]. 强激光与粒子束, 2013, 25(3):641-645. (Chen Bolun, Wei Minxi, Yang Zhenghua, et al. Character of backlight imaging based on spherically bent crystal[J]. High Power Laser and Particle Beams, 2013, 25(3): 641-645 doi: 10.3788/HPLPB20132503.0641
    [21]
    陈伯伦, 杨正华, 韦敏习, 等. 神光II激光装置X射线高分辨单色成像技术[J]. 强激光与粒子束, 2013, 25(12):3119-3122. (Chen Bolun, Yang Zhenghua, Wei Minxi, et al. High-resolution monochromatic X-ray imaging techniques applied to Shenguang II laser facility[J]. High Power Laser and Particle Beams, 2013, 25(12): 3119-3122 doi: 10.3788/HPLPB20132512.3119
    [22]
    杨正华, 陈伯伦, 韦敏习, 等. 高分辨球面弯晶单色成像系统研制与应用[J]. 强激光与粒子束, 2013, 25(9):2267-2269. (Yang Zhenghua, Chen Bolun, Wei Minxi, et al. , Development and application of high-resolution spherically bent crystal monochromatic imaging system[J]. High Power Laser and Particle Beams, 2013, 25(9): 2267-2269 doi: 10.3788/HPLPB20132509.2267
    [23]
    Chen Bolun, Yang Zhenghua, Wei Minxi, et al. Implosion dynamics measurements by monochromatic X-ray radiography in inertial confinement fusion[J]. Physics of Plasmas, 2014, 21: 122705. doi: 10.1063/1.4903336
    [24]
    Bradley D K, Bell P M, Landen O L, et al. Development and characterization of a pair of 30-40 ps X-ray framing cameras[J]. Review of Scientific Instruments, 1995, 66: 1. doi: 10.1063/1.1145258
    [25]
    Hilsabeck T J, Hares J D, Kilkenny J D, et al. Pulse-dilation enhanced gated optical imager with 5 ps resolution (invited)[J]. Review of Scientific Instruments, 2010, 81: 10E317. doi: 10.1063/1.3479111
    [26]
    Nagel S R, Hilsabeck T J, Bell P M, et al. Dilation X-ray imager a new/faster gated X-ray imager for the NIF[J]. Review of Scientific Instruments, 2012, 83: 10E116. doi: 10.1063/1.4732849
    [27]
    Engelhorn K, Hilsabeck T J, Kilkenny J D, et al. Single Line-Of-Sight (SLOS) X-ray imagers[C]// High Temperature Plasma Diagnostic Conference. 2018.
    [28]
    Ress D, Lerche R A, Ellis R J, et al. Neutron imaging of laser fusion targets[J]. Science, 1988, 241(4868): 956-958. doi: 10.1126/science.241.4868.956
    [29]
    Disdier L, Rouyer A, Wilson D C, et al. High-resolution neutron imaging of laser imploded DT targets[J]. Nuclear Instruments & Methods in Physics Research, 2002, 489: 496-502.
    [30]
    Christensen C R, Barnes C W, Morgan G L, et al. First results of pinhole neutron imaging for inertial confinement fusion[J]. Review of Scientific Instruments, 2003, 74(5): 2690-2694. doi: 10.1063/1.1569407
    [31]
    Disdier L, Rouyer A, Lantuejoul I, et al. Inertial confinement fusion neutron images[J]. Physics of Plasmas, 2006, 13: 056317. doi: 10.1063/1.2174828
    [32]
    Grim G P, Bradley P A, Day R D, et al. Neutron imaging development for megajoule scale inertial confinement fusion experiments[C]//Journal of Physics Conference Series. 2008, 112: 032078.
    [33]
    Caillaud T, Landoas O, Briat M, et al. Development of the large neutron imaging system for inertial confinement fusion experiments[J]. Review of Scientific Instruments, 2012, 83: 033502. doi: 10.1063/1.3689768
    [34]
    Merrill F E, Bower D, Buckles R, et al. The neutron imaging diagnostic at NIF[J]. Review of Scientific Instruments, 2012, 83: 10D317. doi: 10.1063/1.4739242
    [35]
    Volegov P L, Danley C R, Fittinghoff D N, et al. Neutron source reconstruction from pinhole imaging at National Ignition Facility[J]. Review of Scientific Instruments, 2014, 85: 023508. doi: 10.1063/1.4865456
    [36]
    Volegov P L, Danley C R, Fittinghoff D N, et al. Self characterization of a coded aperture array for neutron source imaging[J]. Review of Scientific Instruments, 2014, 85: 123506. doi: 10.1063/1.4902978
    [37]
    Fatherley V E, Barker D A, Fittinghoff D N, et al. Design of the aperture array for neutron imaging from the north pole of the National Ignition Facility[C]// Proc of SPIE. 2016: 99660B.
    [38]
    Fatherley V E, Fittinghoff D N, Hibbard R L, et al. Aperture design for the third neutron and first gamma-ray imaging systems for the National Ignition Facility[J]. Review of Scientific Instruments, 2018, 89: 10I127. doi: 10.1063/1.5039328
    [39]
    Lerche R A, Ress D, Ellis R J, et al. Neutron penumbral imaging of laser-fusion targets[J]. Laser & Particle Beams, 1991, 9(1): 99-118.
    [40]
    赵宗清, 丁永坤, 刘东剑, 等. 中子半影成像的数值模拟[J]. 强激光与粒子束, 2006, 18(7):1203-1207. (Zhao Zongqing, Ding Yongkun, Liu Dongjian, et al. Numerical simulation of neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2006, 18(7): 1203-1207
    [41]
    郝轶聃, 缪文勇, 赵宗清, 等. 中子半影成像中椭圆度误差的解析计算[J]. 强激光与粒子束, 2007, 19(3):507-510. (Hao Yidan, Miao Wenyong, Zhao Zongqing, et al. Analytic calculation of ellipticity error effect in neutron penumbral imaging[J]. High Power Laser and Particle Beams, 2007, 19(3): 507-510
    [42]
    余波, 苏明, 黄天晅, 等. 基于100kJ激光装置的中子半影锥成像系统设计[J]. 强激光与粒子束, 2013, 25(10):2604-2610. (Yu Bo, Su Ming, Huang Tianxuan, et al. Designing of diagnostic system for neutron penumbral imaging based on Shenguang-Ⅲ facility[J]. High Power Laser and Particle Beams, 2013, 25(10): 2604-2610 doi: 10.3788/HPLPB20132510.2604
    [43]
    Chen Z, Zhang X, Wang F, et al. Design of neutron imaging aperture for inertial confinement fusion in laser fusion research center[J]. Journal of Instrumentation, 2019, 14: C11007. doi: 10.1088/1748-0221/14/11/C11007
    [44]
    Ng R. Digital light field photography[M]. Palo Atto: Stanford University, 2006.
    [45]
    陈佃文. 基于4D光场数据的深度信息获取[D]. 北京: 北京信息科技大学, 2016.

    Chen Dianwen. Depth information acquisition based on 4D light field data[D]. Beijing: Beijing Information Science & Technology University, 2016.
    [46]
    Mousnier A, Vural E, Guillemot C, et al. Partial light field tomographic reconstruction from a fixed-camera focal stack[J]. Computer Science, arxiv: 1503.01P03, 2015: 1-10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(25)  / Tables(3)

    Article views (2089) PDF downloads(225) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return