Volume 32 Issue 10
Sep.  2020
Turn off MathJax
Article Contents
Liu Zhenbang, Huang Hua, Jin Xiao, et al. Design of X-band high-power high-gain multiple-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103004. doi: 10.11884/HPLPB202032.200188
Citation: Liu Zhenbang, Huang Hua, Jin Xiao, et al. Design of X-band high-power high-gain multiple-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103004. doi: 10.11884/HPLPB202032.200188

Design of X-band high-power high-gain multiple-beam relativistic klystron amplifier

doi: 10.11884/HPLPB202032.200188
  • Received Date: 2019-12-07
  • Rev Recd Date: 2020-09-09
  • Publish Date: 2020-09-29
  • To meet the high power and high gain requirements in engineering applications, we've designed a three-dimensional whole tube model for an X-band high-power high-gain multi-beam relativistic klystron amplifier. This paper presents the high frequency characteristic analysis and the tube with the integrated model. The input cavity structure with bilateral symmetric coupling hole is designed to reduce the influence of the input waveguide on the field uniformity of the input cavity gap. A multi-cavity and multi-gap modulation structure is adopted to reduce the requirement of input microwave power and improve the amplification gain. Moreover, the multi-gap spreading interaction extraction structure is analyzed and designed to improve the power conversion efficiency and reduce the surface electric field intensity, so as to control the risk of RF breakdown of the device. A three-dimensional full electromagnetic particle in cell code is used to simulate the absorption of injected microwave, and the fundamental harmonic modulated current when electron beams propagate through the input cavity and middle cavity gaps have also been simulated. A 3.2 GW averaged microwave power over the oscillator period is generated by simulation with 900 kV electron beam voltage, 9 kA current and 1 T leading magnetic induction intensity, the efficiency is 40% and the amplification gain is 60 dB. In the experiment, a 0.99 GW average microwave power was generated with 550 kV electron beam voltage, 5.1 kA current, 35% efficiency and 53 dB amplification gain.
  • loading
  • [1]
    Serlin V, Frideman M. Development and optimization of the relativistic klystron amplifier[J]. IEEE Trans Plasma Science, 1994, 22(5): 692-700. doi: 10.1109/27.338284
    [2]
    江伟华, 张驰. 高功率微波[M]. 北京: 国防工业出版社, 2009: 293-335

    Jiang Weihua, Zhang Chi. High power microwave[M]. Beijing: National Defence Industry Press, 2009: 293-335
    [3]
    Barker R J, Schamiloglu E. 高功率微波源与技术[M]. 北京: 清华大学出版社, 2005: 57-63

    Barker R J, Schamiloglu E. High power microwave sources and technologies[M]. Beijing: Tsinghua University Press, 2005: 57-63
    [4]
    黄华, 吴洋, 刘振帮, 袁欢, 等. 锁频锁相的高功率微波器件技术研究[J]. 物理学报, 2018, 67:088402. (Huang Hua, Wu Yang, Liu Zhenbang, Yuan Huan, et al. Review on high power microwave device with locked frequency and phase[J]. Acta Physica Sinica, 2018, 67: 088402
    [5]
    李建兵, 林鹏飞, 郝保良, 等. 微波功率放大器发展概述[J]. 强激光与粒子束, 2020, 32:073001. (Li Jianbing, Lin Pengfei, Hao Baoliang, et al. Overview of development of microwave power amplifiers[J]. High Power Laser and Particle Beams, 2020, 32: 073001 doi: 10.11884/HPLPB202032.200095
    [6]
    Li Renjie, Ruan Cunjun, Zhang Huafeng. Design and optimization of G-band extended interaction klystron with high output power[J]. Physics of Plasmas, 2018, 25: 033107. doi: 10.1063/1.5012018
    [7]
    Habermann T, Balkcum A, Begum R, et al. High-power high-efficiency L-band multiple-beam klystron development at CPI[J]. IEEE Trans Plasma Science, 2010, 38: 1264-1269. doi: 10.1109/TPS.2010.2042972
    [8]
    丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社. 2010: 57-60.

    Ding Yaogen. Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010: 57-60
    [9]
    丁耀根. 多注速调管技术新进展[J]. 真空电子技术, 2002, 5:8-14. (Ding Yaogen. The technology development of the multi beam klystron[J]. Vacuum Electronics, 2002, 5: 8-14
    [10]
    张瑞, 王勇. 高峰值功率多注速调管的发展现状[J]. 真空电子技术, 2007, 3:25-30. (Zhang Rui, Wang Yong. Development of high peak power multi-beam klystron[J]. Vacuum Electronics, 2007, 3: 25-30
    [11]
    Abubakirov E B, Denisenko A N, Fuks M I, et al. An X-band gigawatt amplifier[J]. IEEE Trans Plasma Science, 2002, 30: 1041-1052. doi: 10.1109/TPS.2002.801601
    [12]
    Ding Yaogen, Shen Bin, Cao Jing, et al. Research progress on X-band multibeam klystron[J]. IEEE Trans Electron Devices, 2009, 56: 870-876. doi: 10.1109/TED.2009.2015630
    [13]
    Qi Zumin, Zhang Jun, Xie Yongjie, et al. Analysis on the mechanism of pulse-shortening in an X-band triaxial klystron amplifier due to the asymmetric mode competition[J]. Physics of Plasmas, 2016, 23: 123103. doi: 10.1063/1.4969079
    [14]
    Zhang Wei, Ju Jinchuan, Zhang Jun, et al. Theoretical research on TEM mode feedback for compact design of an X-band triaxial klystron amplifier[J]. Physics of Plasmas, 2019, 26: 053102. doi: 10.1063/1.5088713
    [15]
    Friedman M, Pasour J, Smithe D. Modulating electron beams for an X band relativistic klystron amplifier[J]. Applied Physics Letters, 1997, 71: 3724-3726. doi: 10.1063/1.120494
    [16]
    刘振帮, 黄华, 金晓, 等. 长脉冲X波段多注相对论速调管放大器的初步实验研究[J]. 物理学报, 2015, 64:018401. (Liu Zhenbang, Huang Hua, Jin Xiao, et al. Experimental study on a long pulse X-band coaxial multi-beam[J]. Acta Physica Sinica, 2015, 64: 018401
    [17]
    Liu Zhenbang, Huang Hua, Lei Lurong, et al. Investigation of an X-band gigawatt long pulse multibeam relativistic klystron amplifier[J]. Physics of Plasmas, 2015, 22: 093105. doi: 10.1063/1.4929920
    [18]
    何琥, 刘振帮, 黄华. 多注RKA束流调制的理论与模拟比较分析[J]. 强激光与粒子束, 2019, 31:013001. (He Hu, Liu Zhenbang, Huang Hua. Comparison between self-consistent nonlinear theory of current modulation and three-dimensional particle-in-cell simulation in multi-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2019, 31: 013001 doi: 10.11884/HPLPB201931.180095
    [19]
    刘振帮, 赵欲聪, 黄华, 等. Ka波段带状注相对论扩展互作用速调管放大器的分析与设计[J]. 物理学报, 2015, 64:108404. (Liu Zhenbang, Zhao Yucong, Huang Hua, et al. Analysis and design of a Ka-band sheet beam relativistic extended interaction klystron amplifier[J]. Acta Physica Sinica, 2015, 64: 108404
    [20]
    张点. 过模O型Cerenkov高功率微波产生器件相关理论和关键问题研究[D]. 长沙: 国防科学技术大学研究生院, 2014.

    Zhang Dian. Investigation on related theory and key problems of overmoded O-type Cerenkov high power microwave generators[D]. Changsha: Graduate School of National University of Defense Technology, 2014
    [21]
    范植开, 刘庆想, 刘锡三, 等. 多腔谐振腔中渡越时间效应的线性理论[J]. 强激光与粒子束, 1999, 11:633-638. (Fan Zhikai, Liu Qingxiang, Liu Xisan, et al. The linear theory of the transit-time effect in a multiple-cavity resonator[J]. High Power Laser and Particle Beams, 1999, 11: 633-638
    [22]
    刘振帮, 金晓, 黄华, 等. 强流多注相对论速调管中电子束特性的初步研究[J]. 物理学报, 2012, 61:248401. (Liu Zhenbang, Jin Xiao, Huang Hua, et al. Preliminary study of the characteristic of multi-beam in intense multi-beam relativistic klystron[J]. Acta Physica Sinica, 2012, 61: 248401
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (1044) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return