Volume 32 Issue 10
Sep.  2020
Turn off MathJax
Article Contents
Zhang Xu, Wang Yong, Zhang Rui. Study on excitation characteristics of high-order mode coaxial multi-gap cavity[J]. High Power Laser and Particle Beams, 2020, 32: 103009. doi: 10.11884/HPLPB202032.200193
Citation: Zhang Xu, Wang Yong, Zhang Rui. Study on excitation characteristics of high-order mode coaxial multi-gap cavity[J]. High Power Laser and Particle Beams, 2020, 32: 103009. doi: 10.11884/HPLPB202032.200193

Study on excitation characteristics of high-order mode coaxial multi-gap cavity

doi: 10.11884/HPLPB202032.200193
  • Received Date: 2020-07-08
  • Rev Recd Date: 2020-09-15
  • Publish Date: 2020-09-29
  • This paper proposes a Ka-band coaxial multi-gap cavity operating in the TM51-2π mode. The CST eigenmode solver is used to study the characteristics of the electric field distribution, and the mode characteristics of this cavity have been analyzed based on the all-pass coupling structure at the outer radius. By combining space-charge wave theory and 3-D particle-in-cell (PIC) simulation analysis, this paper studies the start-oscillation characteristics of the high-order mode coaxial multi-gap cavity using the multi-beam excitation method. And it analyzes the mode stability and beam-wave interaction characteristics of the coaxial multi-gap cavity operating in the high-order mode. The results show that the coaxial multi-gap cavity operating in the TM51-2π mode adopting the coupling method at the outer radius possesses high mode stability. In this structure, multiple beams can not only uniformly inspire the operating mode but also non-uniformly inspire the competition mode. Different from the multi-beam extended-interaction klystron (EIK) operating in the fundamental mode, the high-order mode EIK with this structure establishes the gap voltages separately. Therefore, the peak electric fields with different phases can interact with the beams respectively. While keeping the same total beam current and beam voltage, the operating method driven by more beams requires a smaller focusing magnetic field.
  • loading
  • [1]
    Berry D, Deng H, Dobbs R, et al. Practical aspects of EIK technology[J]. IEEE Trans Electron Devices, 2014, 61(6): 1830-1835. doi: 10.1109/TED.2014.2302741
    [2]
    Pasour J, Wright E, Nguyen K T, et al. Demonstration of a multikilowatt, solenoidally focused sheet beam amplifier at 94 GHz[J]. IEEE Trans Electron Devices, 2014, 61(6): 1630-1636. doi: 10.1109/TED.2013.2295771
    [3]
    Shin YM, Wang J X, Barnett L R, et al. Particle-in-cell simulation analysis of a multicavity W-band sheet beam klystron[J]. IEEE Trans Electron Devices, 2011, 58(1): 251-257. doi: 10.1109/TED.2010.2082544
    [4]
    Nguyen K, Ludeking L, Pasour J, et al. 1.4: Design of a high-gain wideband high-power 220-GHz multiple-beam serpentine TWT[C]// IEEE International Vacuum Electronics Conference. 2010: 23–24.
    [5]
    Korolev A N, Zaitsev S A, Golenitskij I I, et al. Traditional and novel vacuum electron devices[J]. IEEE Trans Electron Devices, 2011, 48(12): 2929-2935. doi: 10.1109/16.974731
    [6]
    丁耀根, 阮存军, 沈斌, 等. X波段同轴腔多注速调管的研究[J]. 电子学报, 2006, 34(s1):2337-2341. (Ding Yaogen, Ruan Cunjun, Shen Bin, et al. Study of a X-band coaxial cavity multi beam klystron[J]. Acta Electronica Sinica, 2006, 34(s1): 2337-2341
    [7]
    Kowalski E J, Shapiro A, Temkin R J. An overmoded W-band coupled-cavity TWT[J]. IEEE Trans Electron Devices, 2015, 62(5): 1609-1616. doi: 10.1109/TED.2015.2407865
    [8]
    Ding Yaogen, Shen Bin, Cao Jing, et al. Research progress on X-band multi-beam klystron[C]//IEEE International Vacuum Electronics Conference. 2008: 421-422.
    [9]
    董玉和. 微波圆柱和同轴腔高阶横磁模式及输出耦合[D]. 北京: 中国科学院电子学研究所, 2006: 21-41.

    Dong Yuhe. Research on higher order transverse magnetic mode of microwave cylindrical coaxial cavity and its out-coupling[D]. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2006: 21-41
    [10]
    Lü Suye, Zhang Changqing, Wang Shuzhong, et al. Stability analysis of a planar multiple-beam circuit for W-band high-power extended-interaction klystron[J]. IEEE Trans Electron Devices, 2015, 62(9): 3042-3047. doi: 10.1109/TED.2015.2435031
    [11]
    张克潜, 李德杰. 微波与光电子学中的电磁理论[M]. 2版. 北京: 电子工业出版社, 2001.

    Zhang Keqian, Li Dejie. Electromagnetic theory for microwave and optoelectronics. 2nd ed. Beijing: Publishing House of Electronics Industry, 2001
    [12]
    肖宇杰, 林福民. 0.3 THz TM10,1,0模同轴耦合腔链[J]. 强激光与粒子束, 2018, 30:103101. (Xiao Yujie, Lin Fumin. 0.3 THz TM10,1,0 mode coaxial coupled cavity chain[J]. High Power Laser and Particle Beams, 2018, 30: 103101 doi: 10.11884/HPLPB201830.180153
    [13]
    Wang Dongyang, Wang Guangqiang, Wang Jianguo, et al. A high-order mode extended interaction klystron at 0.34 THz[J]. Physics of Plasmas, 2017, 24: 023106. doi: 10.1063/1.4975649
    [14]
    Chodorow M, Wessel-Berg T. A high-efficiency klystron with distributed interaction[J]. IEEE Trans Electron Devices, 1961, 8(1): 44-55. doi: 10.1109/T-ED.1961.14708
    [15]
    Luo Jirun, Cui Jian, Zhu Min, et al. Stability analysis of 2π mode operation in the beam-wave interaction process for a three-gap Hughes-type coupled cavity chain[C]//IEEE International Vacuum Electronics Conference. 2012: 281-282.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (1087) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return