Volume 32 Issue 10
Sep.  2020
Turn off MathJax
Article Contents
Yang Fuxiang, Dang Fangchao, He Juntao, et al. Simulation and design of novel Ku-band radial-line relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103006. doi: 10.11884/HPLPB202032.200227
Citation: Yang Fuxiang, Dang Fangchao, He Juntao, et al. Simulation and design of novel Ku-band radial-line relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2020, 32: 103006. doi: 10.11884/HPLPB202032.200227

Simulation and design of novel Ku-band radial-line relativistic klystron amplifier

doi: 10.11884/HPLPB202032.200227
  • Received Date: 2020-08-01
  • Rev Recd Date: 2020-09-08
  • Publish Date: 2020-09-29
  • High-frequency relativistic klystron amplifier is one of the research hotspots in the field of high power microwave in recent years, and its development is mainly limited by mode competition, phase jitter and low efficiency. This paper presents the design of a novel Ku-band radial-line klystron amplifier, which consists of an input cavity, two groups of double-gap bunching cavities and a three-gap extraction cavity. By comparing the coupling coefficient of single-gap bunching cavity with that of non-uniform double-gap bunching cavities, it is proved that non-uniform double-gap bunching cavity has stronger modulation ability to the electron beam. The working mode of non-uniform double-gap bunching cavity with a TEM reflector is TM01-π mode, which has a large Q value and benefit from energy isolation between resonant cavities. When the injection power is only 10 kW, the modulation depth of fundamental current is about 110% by cascading two groups of double-gap cavities. PIC simulationshows that this device has high efficiency. When electron beam voltage is 400 kV, beam current is 5 kA and magnetic field is only 0.4 T, high power microwaves with frequency of 14.25 GHz and output power of 825 MW are obtained.
  • loading
  • [1]
    Zhang Jiande, Ge Xingjun, Zhang Jun, et al. Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT[J]. Matter & Radiation at Extremes, 2016, 1(3): 163-178. doi: 10.1016/j.mre.2016.04.001
    [2]
    Zhang Jun, Zhang Dian, Fan Yuwei, et al. Progress in narrowband high-power microwave sources[J]. Physics of Plasmas, 2020, 27: 010501. doi: 10.1063/1.5126271
    [3]
    Benford J, Swegle J A, Schamiloglu E. 高功率微波[M]. 国防工业出版社, 2008.

    Benford J, Swegle J A, Schamiloglu E. High power microwave[M]. Beijing: National Defense Industry Press, 2008
    [4]
    Zhang Jun, Zhang Wei, Zhang Dian, et al. Suppression of the higher-order azimuthal mode competition in an X-band triaxial klystron amplifier with a slotted coaxial waveguide[J]. IEEE Trans Electron Devices, 2020, 67(3): 1215-1220. doi: 10.1109/TED.2019.2963567
    [5]
    Zhou Yunxiao, Ju Jinchuan, Zhang Jun, et al. Design and optimization of reflectors in a relativistic triaxial klystron amplifier[J]. IEEE Trans Plasma Science, 2020, 48(6): 1923-1929. doi: 10.1109/TPS.2020.2980084
    [6]
    张威. X波段高功率高效率相对论三轴速调管放大器研究[D]. 长沙: 国防科技大学, 2019.

    Zhang Wei. Investigation of an X-band high-power and high-efficiency relativistic triaxial klystron amplifier[D]. Changsha: National University of Defense Technology, 2019
    [7]
    Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of the phase stability of an X-band long pulse multibeam relativistic klystron amplifier[J]. Phys Plasmas, 2016, 23: 093110. doi: 10.1063/1.4962760
    [8]
    Ju Jinchuan, Zhang Jun, Qi Zumin, et al. Towards coherent combining of X-band high power microwaves: Phase-locked long pulse radiations by a relativistic triaxial klystron amplifier[J]. Sci Rep, 2016, 6: 30657. doi: 10.1038/srep30657
    [9]
    刘振帮, 雷禄容, 黄华, 等. X波段长脉冲多注相对论速调管放大器杂模振荡抑制[J]. 强激光与粒子束, 2016, 28:033002. (Liu Zhenbang, Lei Lurong, Huang Hua, et al. Suppression of parasitic oscillation in X-band long pulse multi-beam relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2016, 28: 033002 doi: 10.11884/HPLPB201628.033002
    [10]
    戚祖敏. X波段三轴相对论速调管放大器研究[D]. 长沙: 国防科技大学, 2015.

    Qi Zumin. Investigation of an X-band triaxial relativistic klystron amplifier[D]. Changsha: National University of Defense Technology, 2015
    [11]
    Liu Zhenbang, Huang Hua, Lei Lurong, et al. Investigation of an X-band gigawatts long pulse multi-beam relativistic klystron amplifier[J]. Phys Plasmas, 2015, 22: 093105. doi: 10.1063/1.4929920
    [12]
    Wu Y, Li Z, Xie H, et al. An S-band high gain relativistic klystron amplifier with high phase stability[J]. Phys Plasmas, 2014, 21: 113107. doi: 10.1063/1.4901811
    [13]
    袁欢, 黄华, 何琥, 等. S波段相对论速调管放大器相位稳定性的优化设计及实验研究[J]. 强激光与粒子束, 2017, 29:113001. (Yuan Huan, Huang Hua, He Hu, et al. Optimization and experimental study of phase characteristics of S-band relativistic klystron amplifier[J]. High Power Laser and Particle Beams, 2017, 29: 113001 doi: 10.11884/HPLPB201729.170133
    [14]
    党方超. Ku波段径向线相对论速调管研究[D]. 长沙: 国防科技大学, 2017.

    Dang Fangchao. Research on Ku-band radial relativistic klystron[D]. Changsha: National University of Defense Technology, 2017
    [15]
    Dang Fangchao, Zhang Xiaoping, Zhong Huihuang, et al. A high efficiency Ku-band radial line relativistic klystron amplifier[J]. Phys Plasmas, 2016, 23: 073113. doi: 10.1063/1.4958810
    [16]
    Dang Fangchao, Zhang Xiaoping, Zhong Huihuang, et al. Simulation investigation of a Ku-band radial line oscillator operating at low guiding magnetic field[J]. Phys Plasmas, 2014, 21: 063307. doi: 10.1063/1.4886150
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (1212) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return