Volume 33 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Li Baojian, Qu Bo, Xia Lei, et al. Design of Q-band wideband linearizer[J]. High Power Laser and Particle Beams, 2021, 33: 023004. doi: 10.11884/HPLPB202133.200206
Citation: Li Baojian, Qu Bo, Xia Lei, et al. Design of Q-band wideband linearizer[J]. High Power Laser and Particle Beams, 2021, 33: 023004. doi: 10.11884/HPLPB202133.200206

Design of Q-band wideband linearizer

doi: 10.11884/HPLPB202133.200206
  • Received Date: 2020-07-18
  • Rev Recd Date: 2020-10-22
  • Publish Date: 2021-01-07
  • At present, China’s Q/V band low orbit satellite internet project is being vigorously carried out, broadband communications are gradually developing. But the domestic linearization technology is generally limited to narrow band, the related research is not mature. Therefore, it is necessary to design broadband linearizer as soon as possible. In this paper, a Q-band linearizer of traveling-wave tube amplifier (TWTA) for satellite communication has been designed using an analog predistortion technique suitable for space environment. Using the new microstrip transmission structure and the Schottky diode, the ultra-wide instantaneous frequency band can be linearized in the millimeter-wave frequency band. The amplitude distortion and phase distortion of TWTA are greatly improved in the 38−43 GHz (5 GHz) instantaneous frequency band. The linearizer has an in-band amplitude gain of about 4.8−7.2 dB and a phase expansion of about 70°−88° in the input power range of −17−13 dBm. Compared with other linearizers of the same type, this linearizer has higher corresponding frequency and can realize stable linearization of TWTA in a wide instantaneous frequency band.
  • loading
  • [1]
    蒋超. 空间行波管用线性化器设计[D]. 成都: 电子科技大学, 2010.

    Jiang Chao. Design of linearizer for space TWTA[D]. Chengdu: University of Electronic Science and Technology, 2010
    [2]
    李晨飞. 毫米波功率放大器的线性化技术[D]. 成都: 电子科技大学, 2011.

    Li Chenfei. Linearization technology of millimeter wave power amplifier[D]. Chengdu: University of Electronic Science and Technology, 2011
    [3]
    Zhang W M, Yuen C. A broadband linearizer for Ka-band satellite communication[C]//IEEE International Microwave Symposium Digest. 1998, 3: 1203-1206.
    [4]
    Villemazet J F, Yahi H, Azzara J C, et al. New analog predistortion linearizer for Ku-band TWTA allowing 1 GHz instantaneous wide-band satellite operation[R]. AIAA 2013-5672.
    [5]
    张旭阳. 毫米波预失真技术研究[D]. 成都: 电子科技大学, 2014: 41-76.

    Zhang Xuyang. Research on millimeter wave predistortion technology[D]. Chengdu: University of Electronic Science and Technology, 2014: 41-76
    [6]
    Bera S C, Singh R V, Garg V K. Diode-based predistortion lineariser for power amplifiers[J]. Electronics Letters, 2008, 44(2): 125-126. doi: 10.1049/el:20082436
    [7]
    Katz A, Gray R, Dorval R. Linear power and efficiency at microwave and millimeter-wave using TWTA based microwave power modules[J]. IEEE Microwave Magazine, 2009, 10(7): 78-89. doi: 10.1109/MMM.2009.934500
    [8]
    Deng J, Gudem P S, Larson L E, et al. A SiGe PA with dual dynamic bias control and memoryless digital predistortion for WCDMA handset applications[J]. IEEE Journal of Solid-State Circuits, 2006, 41(5): 1210-1221. doi: 10.1109/JSSC.2006.872735
    [9]
    Presti C D, Carrara F, Scuderi A, et al. A 25 dBm digitally modulated CMOS power amplifier for WCDMA/EDGE/OFDM with adaptive digital predistortion and efficient power control[J]. IEEE Journal of Solid-State Circuits, 2009, 44(7): 1883-1896. doi: 10.1109/JSSC.2009.2020226
    [10]
    Morgan D R, Ma Z, Kim J, et al. A generalized memory polynomial model for digital predistortion of RF power amplifiers[J]. IEEE Trans Signal Processing,, 2006, 54(10): 3852-3860. doi: 10.1109/TSP.2006.879264
    [11]
    Villemazet J F, Hissa Y, David L. High accuracy wide band analog predistortion linearizer for telecom satellite transmit section[C]//IEEE MTT-S International Microwave Symposium.2010.
    [12]
    李征帆. 微带电路[M]. 北京: 清华大学出版社, 2017: 179-191.

    Li Zhengfan. Microstrip circuit[M]. Beijing: Tsinghua University Press, 2017: 179-191
    [13]
    黄鹂, 黄永茂, 李良荣, 等. 基于缺陷地结构的微带低通滤波器设计[J]. 强激光与粒子束, 2018, 30:123003. (Huang Li, Huang Yongmao, Li Liangrong, et al. Design of microstrip low pass filter based on defected ground structure[J]. High Power Laser and Particle Beams, 2018, 30: 123003 doi: 10.11884/HPLPB201830.180235
    [14]
    刘高飞, 陈夏寅, 彭菊红, 等. 一种基于缺陷地结构的微带滤波器的优化设计[J]. 信息通信, 2020(5):57-59. (Liu Gaofei, Chen Xiayin, Peng Juhong, et al. Optimization design of microstrip filter based on defected ground structure[J]. Information Communication, 2020(5): 57-59 doi: 10.3969/j.issn.1673-1131.2020.05.022
    [15]
    杨宇斌. 带短路支节的高隔离度分支线定向耦合器设计研究[D]. 南京: 南京邮电大学. 2015.

    YangYubin. Design and research on high isolation branch line directional coupler with short circuit branch. Nanjing: Nanjing University of Posts and Telecommunications, 2015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (1110) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return