Volume 33 Issue 2
Jan.  2021
Turn off MathJax
Article Contents
Nie Yong, Yan Eryan, Yang Hao, et al. Transmission enhancement effect of electromagnetic wave in non-uniform collisional plasma[J]. High Power Laser and Particle Beams, 2021, 33: 023003. doi: 10.11884/HPLPB202133.200233
Citation: Nie Yong, Yan Eryan, Yang Hao, et al. Transmission enhancement effect of electromagnetic wave in non-uniform collisional plasma[J]. High Power Laser and Particle Beams, 2021, 33: 023003. doi: 10.11884/HPLPB202133.200233

Transmission enhancement effect of electromagnetic wave in non-uniform collisional plasma

doi: 10.11884/HPLPB202133.200233
  • Received Date: 2020-08-07
  • Rev Recd Date: 2020-11-12
  • Publish Date: 2021-01-07
  • The effect of plasma on the transmission properties of electromagnetic waves and its application have always been one of the key research directions of electromagnetic theory and technology and plasma physics. The enhancement effect of collisional plasma on electromagnetic waves is a classic subject of the interaction between electromagnetic waves and plasma. Based on the transmission characteristics of electromagnetic waves in medium, this paper takes plasma as a special medium, and carries out experimental, theoretical and simulation studies on the transmission characteristics of high power microwave (HPM) atmospheric plasma and a certain range of electromagnetic waves under certain experimental conditions. The study found that the plasma formed by the S-band HPM under a vacuum of 50 Pa has a great influence on the electromagnetic wave transmission characteristics of different frequencies, and the electromagnetic wave transmission signal enhancement effect occurs regularly within a certain frequency range. A series of transmission waveforms of continuous electromagnetic waves of different frequencies passing through the HPM plasma area were obtained, and the waveforms were normalized. At 32.4 GHz, the transmission coefficient of continuous electromagnetic waves passing through the plasma area with plasma is about twice as high as that through the area without plasma. A simulation model was established, and the transmission coefficient distribution curve in the range of 31.5−32.5 GHz was obtained. The electromagnetic wave passing through the plasma showed a transmission enhancement effect, and at some frequency points, there was a transmission enhancement of about 1.9 times. The research results provides important technical support for the application of plasma in stealth, emergency communications, and black barrier communications.
  • loading
  • [1]
    王家胜, 杨显强, 经姚翔, 等. 钝头型航天器再入通信黑障及对策研究[J]. 航天器工程, 2014, 23(1):6-16. (Wang Jiasheng, Yang Xianqiang, Jing Yaoxiang, et al. On the communication blackout during reentry of blunt-nosed spacecraft and its eliminating approaches[J]. Spacecraft Engineering, 2014, 23(1): 6-16 doi: 10.3969/j.issn.1673-8748.2014.01.002
    [2]
    王志斌, 孔繁荣, 鄂鹏, 等. 再入航天器表面亚波长等离子体薄层对微波信号影响效应研究[J]. 中国空间科学技术, 2017, 37(1):111-116. (Wang Zhibin, Kong Fanrong, E Peng, et al. Dumping effect of microwave signal in plasma slabs with sub-wavelength characteristics around spacecraft[J]. Chinese Space Science and Technology, 2017, 37(1): 111-116
    [3]
    闫二艳, 杨浩, 郑强林, 等. 瞬变等离子体微波诊断初步研究[J]. 强激光与粒子束, 2019, 31:103207. (Yan Eryan, Yang Hao, Zheng Qianglin, et al. Principium study of the microwave diagnostics for transient temperature plasma[J]. High Power Laser and Particle Beams, 2019, 31: 103207 doi: 10.11884/HPLPB201931.190175
    [4]
    杨浩, 闫二艳, 郑强林, 等. 临近空间高功率微波辐照放电试验技术[J]. 强激光与粒子束, 2019, 31:103216. (Yang Hao, Yan Eryan, Zheng Qianglin, et al. Examination research of high power microwave irradiation discharge in near space[J]. High Power Laser and Particle Beams, 2019, 31: 103216 doi: 10.11884/HPLPB201931.190151
    [5]
    Vidmar R J. On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers[J]. IEEE Trans Plasma Science, 1990, 18(4): 733-741. doi: 10.1109/27.57528
    [6]
    Gregoire D J, Santoru J, Schumacher R W. Electromagnetic-wave propagation in unmagnetized plasmas[R]. AD-A250710, 1992.
    [7]
    Laroussi M. Scattering of electromagnetic waves by a layer of air plasma surrounding a conducting cylinder[J]. International Journal of Infrared & Millimeter Waves, 1996, 17(12): 2215-2232.
    [8]
    Laroussi M, Roth J R. Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab[J]. IEEE Trans Plasma Science, 2002, 21(4): 366-372.
    [9]
    Kalluri D K, Lee J H, Ehsan M M. FDTD simulation of electromagnetic pulse interaction with a switched plasma slab[J]. International Journal of Infrared & Millimeter Waves, 2003, 24(3): 349-365.
    [10]
    Kim H C, Verboncoeur J P. Reflection, absorption and transmission of TE electromagnetic waves propagation in a nonuniform plasma slab[J]. Computer Physics Communications, 2007, 177(1): 118-121.
    [11]
    Samimi A, Simpson J J. An efficient 3-D FDTD model of electromagnetic wave propagation in magnetized plasma[J]. IEEE Trans Antennas & Propagation, 2014, 63(1): 269-279.
    [12]
    Soliman E A, Helaly A, Megahed A A. Propagation of electromagnetic waves in planar bounded plasma region[J]. Prog Electromagn Res, 2007, 67: 25-37. doi: 10.2528/PIER06071102
    [13]
    Gürel C S, Öncü E. Frequency selective characteristics of a plasma layer with sinusoidally-varying electron density profile[J]. Journal of Infrared Millimeter & Terahertz Waves, 2009, 30(6): 589-597.
    [14]
    Zhang Shu, Hu Xiwei, Jiang Zhonghe, et al. Propagation of an electromagnetic wave in an atmospheric pressure plasma: Numerical solutions[J]. Physics of Plasmas, 2006, 13(1): 2618-2630.
    [15]
    Yuan Chengxun, Zhou Zhongxiang, Zhang Jingwen, et al. Propagation of terahertz waves in an atmospheric pressure microplasma with Epstein electron density profile[J]. Journal of Applied Physics, 2011, 109(6): 1189.
    [16]
    Hu Binjie, Wei Guang, Lai Shengli. SMM analysis of reflection, absorption, and transmission from nonuniform magnetized plasma slab[J]. IEEE Trans Plasma Science, 1999, 27(4): 1131-1136. doi: 10.1109/27.782293
    [17]
    Kong X K, Yang H W, Liu S B, et al. Research on the reflection, absorption and transmission of electromagnetic waves for inhomogeneous magnetized plasma[C]//International Conference on Microwave and Millimeter Wave Technology. 2008.
    [18]
    赵朋程, 郭立新, 李慧敏. 110 GHz高功率微波在大气击穿等离子体中的传输、反射和吸收[J]. 电波科学学报, 2016, 31(3):512-515. (Zhao Pengcheng, Guo Lixin, Li Huiming. Transmission, reflection and absorption of 110 GHz high-power microwave in air breakdown plasma[J]. Chinese Journal of Radio Science, 2016, 31(3): 512-515
    [19]
    周前红, 董志伟, 陈京元. 110 GHz 微波电离大气产生等离子体过程的理论研究[J]. 物理学报, 2011, 60(12):349-360. (Zhou Qianhong, Dong Zhiwei, Chen Jingyuan. Modeling of plasma pattern formation in 110 GHz microwave air breakdown[J]. Acta Physica Sinica, 2011, 60(12): 349-360
    [20]
    Destler W W, Degrange J E, Fleischmann H H, et al. Experimental studies of high-power microwave reflection, transmission, and absorption from a plasma-covered plane conducting boundary[J]. Journal of Applied Physics, 1991, 69(9): 6313-6318. doi: 10.1063/1.348829
    [21]
    Koretzky E, Kuo S P. Characterization of an atmospheric pressure plasma generated by a plasma torch array[J]. Physics of Plasmas, 1998, 5(10): 3774-3780. doi: 10.1063/1.872741
    [22]
    马平, 曾学军, 石安华, 等. 电磁波在等离子体高温气体中传输特性实验研究[J]. 实验流体力学, 2010, 24(5):51-56. (Ma Ping, Zeng Xuejun, Shi Anhua, et al. Experimental investigation on electromagnetic wave transmission characteristic in the plasma high temperature gas[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(5): 51-56 doi: 10.3969/j.issn.1672-9897.2010.05.011
    [23]
    郑灵, 赵青, 罗先刚, 等. 等离子体中电磁波传输特性理论和实验研究[J]. 物理学报, 2012, 61(15):343-349. (Zheng Ling, Zhao Qing, Luo Xiangang, et al. Theoretical and experimental studies of electromagnetic wave transmission in plasma[J]. Acta Physica Sinica, 2012, 61(15): 343-349
    [24]
    刘新芽. 电磁波在多层介质内的透射[J]. 光学学报, 1995, 15(1):122-125. (Liu Xinya. The transmisson of electromagnetic waves in multilayer media[J]. Acta Opticia Sinica, 1995, 15(1): 122-125 doi: 10.3321/j.issn:0253-2239.1995.01.025
    [25]
    周琦, 刘新芽. 多层介质中电磁波的反射与透射[J]. 南昌大学学报(理科版), 2003, 23(1):37-44. (Zhou Qi, Liu Xinya. The reflection and transmission of electromagnetic wave in multilayer media[J]. Journal of Nanchang University(Natural Science), 2003, 23(1): 37-44
    [26]
    江遴汉, 张祖荣. 电磁波在均匀薄膜上的反射和透射[J]. 物理与工程, 2014(s2):9-12. (Jiang Linhan, Zhang Zurong. Reflection and transmission of electromagnetic wave on uniform film[J]. Physics and Engineering, 2014(s2): 9-12
    [27]
    Epstein P S. Reflection of waves in an inhomogeneous absorbing medium[J]. Proc NaR Acad Sci Wash, 1930, 16(10): 627-637. doi: 10.1073/pnas.16.10.627
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (854) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return