Volume 33 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Li Ya’nan, Liu Shishuo, Cai Jun. Design of high-power wide-band G-band third harmonic amplifier[J]. High Power Laser and Particle Beams, 2021, 33: 033002. doi: 10.11884/HPLPB202133.200251
Citation: Li Ya’nan, Liu Shishuo, Cai Jun. Design of high-power wide-band G-band third harmonic amplifier[J]. High Power Laser and Particle Beams, 2021, 33: 033002. doi: 10.11884/HPLPB202133.200251

Design of high-power wide-band G-band third harmonic amplifier

doi: 10.11884/HPLPB202133.200251
  • Received Date: 2020-08-26
  • Rev Recd Date: 2020-11-13
  • Available Online: 2021-03-30
  • Publish Date: 2021-03-05
  • To meet the demand of high-power and wide-band signal sources for G-band vacuum electronic devices, the research on G-band third harmonic amplifier is carried out. The amplifier utilizes the third harmonic current in the nonlinear beam-wave interaction of E-band TWT, and realizes G-band electromagnetic wave amplification by cascading harmonic interaction section. The design scheme of high performance and practical G-band wide-band high-power source adopts folded waveguide slow wave structure with modified circular bends, and the G-band third harmonic amplifier is simulated and optimized by using the microwave tube simulator package (MTSS) software. The result shows that the device can obtain harmonic output power greater than 3.6 W in the range of 15 GHz, with conversion gain>33.3 dB and electronic efficiency>0.36%. Compared with other miniaturized terahertz radiation sources in this band, it has superior performance in terms of output power and bandwidth, and thus provides a design basis for the subsequent research of G-band third harmonic amplifier.
  • loading
  • [1]
    蔡英武, 杨陈, 曾耿华, 等. 太赫兹极高分辨力雷达成像试验研究[J]. 强激光与粒子束, 2012, 24(1):7-9. (Cai Yingwu, Yang Chen, Zeng Genghua, et al. Experimental research on high resolution terahertz imaging[J]. High Power Laser and Particle Beams, 2012, 24(1): 7-9
    [2]
    董庆楠. 浅谈太赫兹波的特点及其在国民经济中的应用[J]. 科协论坛, 2009(7):78-79. (Dong Qingnan. Characteristics of terahertz wave and its application in national economy[J]. Science and Technology Association Forum, 2009(7): 78-79
    [3]
    NagatsumaT. Exploring sub-terahertz waves for future wireless communications[C]//The Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics. 2006: 4.
    [4]
    宫玉彬, 周庆, 田瀚文, 等. 基于电子学的太赫兹辐射源[J]. 深圳大学学报理工版, 2019, 36(2):111-127. (Gong Yubin, Zhou Qing, Tian Hanwen, et al. Terahertz radiation sources based on electronics[J]. Journal of Shenzhen University Science and Engineering, 2019, 36(2): 111-127 doi: 10.3724/SP.J.1249.2019.02111
    [5]
    蔡金赤. 0.22 THz 折叠波导返波管理论和实验研究[D]. 北京: 清华大学, 2015: 5-9.

    Cai Jinchi. Theoretical and experimental study on backward wave management of 0.22 THz folded waveguide. Beijing: Tsinghua University, 2015: 5-9
    [6]
    Cai Jun, Feng Jinjun, Wu Xianping. Traveling wave tube harmonic amplifier in terahertz and experimental demonstration[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 648-651.
    [7]
    蔡军, 邬显平, 冯进军. 太赫兹行波管级联倍频器[J]. 太赫兹科学与电子信息学报, 2013, 11(5):678-683. (Cai Jun, Wu Xianping, Feng Jinjun. THz TWT cascade multiplier[J]. Journal of Terahertz Science and Electronic Information Technology, 2013, 11(5): 678-683
    [8]
    Kenneth E, Jack C, Mark A, et al. Gallagher 220 GHz power amplifier testing at Northrop Grumman[C]//IEEE 14th International Vacuum Electronics Conference (IVEC). 2013: 35-38.
    [9]
    Basten M A, Tucek J C, Gallagher D A, et al. 233 GHz high power amplifier development at Northrop Grumman[C]//IEEE 17th International Vacuum Electronics Conference(IVEC). 2016: 43-44.
    [10]
    Nguyen K, Lars L K, PasourJ, et al. Design a high-gain wideband high power 220-GHz multiple-beam serpentine TWT[C]//IEEE 11th International Vacuum Electronics Conference(IVEC). 2010: 23-24.
    [11]
    Joye C D, Cook A M, Calam J P, et al. Demonstration of a high power wide-band 220-GHz traveling wave amplifier fabricated by UV-LIGA[J]. IEEE Trans Electron Devices, 2014, 61(6): 1672-1678. doi: 10.1109/TED.2014.2300014
    [12]
    Gong Huarong, Wang Qi, Deng Difu, et al. Third-harmonic traveling-wave tube multiplier-amplifier[J]. IEEE Trans Electron Devices, 2018, 65(6): 2189-2194. doi: 10.1109/TED.2017.2785661
    [13]
    刘盛纲, 李宏福, 王文祥, 等. 微波电子学导论[M]. 北京: 国防工业出版社, 1985: 96-117.

    Liu Shenggang, Li Hongfu, Wang Wenxiang, et al. Introduction to microwave electronics. Beijing: National Defense Industry Press, 1985: 96-117
    [14]
    Li Hanyan, Li Yongtao, Feng Jinjun. Fabrication of 340-GHz folded waveguides using KMPR photo resist[J]. IEEE Electron Device Letters, 2013, 34(3): 462-464.
    [15]
    Yuan L, Kirby P L, Papapolymerou J. Silicon micromachined W-band folded and straight waveguides using DRIE technique[C]//IEEE MTT-S Int Microw Symp Dig. 2006: 1915-1918.
    [16]
    Gamzina D. Nano-CNC machining of sub-THz vacuum electron devices[J]. IEEE Trans Electron Devices, 2016, 63(10): 4067-4073. doi: 10.1109/TED.2016.2594027
    [17]
    Cai Jun, Feng Jinjun, Wu Xianping. Folded waveguide slow wave structure with modified circular bends[J]. IEEE Trans Electron Devices, 2014, 61(10): 3534-3538. doi: 10.1109/TED.2014.2349651
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (1182) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return