Volume 33 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
Li Bo, Liu Huachang, Wang Yun, et al. Simulating analysis on electric field flatness of deformed superconducting elliptical cavity for CSNS-II linac[J]. High Power Laser and Particle Beams, 2021, 33: 034001. doi: 10.11884/HPLPB202133.200259
Citation: Li Bo, Liu Huachang, Wang Yun, et al. Simulating analysis on electric field flatness of deformed superconducting elliptical cavity for CSNS-II linac[J]. High Power Laser and Particle Beams, 2021, 33: 034001. doi: 10.11884/HPLPB202133.200259

Simulating analysis on electric field flatness of deformed superconducting elliptical cavity for CSNS-II linac

doi: 10.11884/HPLPB202133.200259
  • Received Date: 2020-09-09
  • Rev Recd Date: 2020-12-01
  • Available Online: 2021-03-30
  • Publish Date: 2021-03-05
  • Superconducting elliptical cavity is a thin-walled structure formed by stamping parts and electron beam welding, and there are inevitable deformations in the machining process, like cell tilt, cell off-axis and cell length deviation. Thus, the axial electric field flatness of the elliptical cavity is affected, and then the operating electric field gradient is reduced. Therefore, pre-tuning is necessary after the elliptical cavity finish processing. The pre-tuning of elliptical cavity is to improve the axial electric field flatness by reshaping the elliptical cavity, including the correction of cell tilt and off-axis, and the correction of cell length. This paper presents the simulation of possible deformation of elliptical cavity by COMSOL multiphysics software and analyzes the influence of cell deformation and tuning displacement on electric field flatness is analyzed, it can provide data reference for CSNS-II elliptical cavity pre-tuning and guide the designing and developing of pre-tuning machine. In addition, it determines the requirements of mechanical deformation to ensure the machining quality of elliptical cavity to meet the actual engineering requirements of CSNS-II.
  • loading
  • [1]
    郑洪娟. ILC/CEPC超导加速系统设计及关键技术研究[D]. 北京: 中国科学院高能物理研究所, 2016: 30-38.

    Zheng Hongjuan. Superconducting radio frequency system design and key technology research for ILC/CEPC[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2016: 30-38
    [2]
    Furuya T. Development of superconducting RF technology[J]. Reviews of Accelerator Science and Technology, 2008(1): 211-235.
    [3]
    Wang Sheng, Fang Shouxian, Fu Shinian, et al. Introduction to the over all physics design of CSNS accelerators[J]. Chinese Physics C, 2009, 33(s2): 1-3. doi: 10.1088/1674-1137/33/S2/001
    [4]
    Wei Jie, Fu Shinian, Tang Jingyu, et al. China spallation neutron source—An overview of application prospects[J]. Chinese Physics C, 2009, 33(11): 1033-1042. doi: 10.1088/1674-1137/33/11/021
    [5]
    李波, 刘华昌, 王云, 等. CSNS-II超导椭球腔失谐研究[J]. 原子核物理评论, 2020, 37(2):186-190. (Li Bo, Liu Huachang, Wang Yun, et al. Detuning analysis of the superconducting elliptical cavity for CSNS-II linac[J]. Nuclear Physics Review, 2020, 37(2): 186-190 doi: 10.11804/NuclPhysRev.37.2020013
    [6]
    刘亚萍. BEPC II 500 MHz 铌腔的研制[D]. 北京: 中国科学院高能物理研究所, 2011: 42-77.

    Liu Yaping. Study of BEPC II 500 MHz niobium cavity[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2011: 42-77
    [7]
    Chiaveri E, Lengeler H. Welding of niobium cavities at CERN[C]//Proceedings of SRF Workshop. 1984: 611-625.
    [8]
    贺斐思. 面向加速器前沿的几种射频超导加速腔的研发与测试[D]. 北京: 北京大学, 2013: 37-55.

    He Feisi. R&D on superconducting cavities for the next generation SRF accelerators[D]. Beijing: Peking University, 2013: 37-55
    [9]
    唐正博. 超导腔的预调谐技术研究[D]. 上海: 中国科学院上海应用物理研究所, 2014: 57-66.

    Tang Zhengbo. Study on the pre-tuning technology of the superconducting cavity[D]. Shanghai: Institute of Applied Physics, Chinese Academy of Sciences, 2014: 57-66
    [10]
    COMSOL study center[EB/OL]. http://cn.comsol.com/learning-center.
    [11]
    徐江峰, 金永兴, 邬良能, 等. 理想导体金属谐振腔电磁场微扰理论研究[J]. 微波学报, 2004, 20(1):26-29. (Xu Jiangfeng, Jin Yongxing, Wu Lingneng, et al. A new perturbation theory of electromagnetic fields in metal cavity[J]. Journal of Microwaves, 2004, 20(1): 26-29 doi: 10.3969/j.issn.1005-6122.2004.01.007
    [12]
    宋翔翔, 郭之虞, 朱昆, 等. RFQ加速器腔体电场分布的冷模测量[J]. 北京大学学报(自然科学版), 2006, 42(3):339-342. (Song Xiangxiang, Guo Zhiyu, Zhu Kun, et al. Measurement of the field distribution in a cold model of RFQ resonant cavity[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(3): 339-342
    [13]
    Yin Xuejun, Li Ahong, Xiao Yongchuan, et al. Preliminary study on the RF tuning of CSNS DTL[J]. Chinese Physics C, 2014, 38: 027002. doi: 10.1088/1674-1137/38/2/027002
    [14]
    杨峻. 1500 MHz 5-cell超导腔的仿真及优化[D]. 上海: 中国科学院上海应用物理研究所, 2015: 17-28.

    Yang Jun. Simulation of a 1500 MHz 5-cell superconducting cavity[D]. Shanghai: Institute of Applied Physics, Chinese Academy of Sciences, 2015: 17-28
    [15]
    米正辉. 超导腔调谐器设计研究[D]. 北京: 中国科学院高能物理研究所, 2015: 29-32.

    Mi Zhenghui. Design and research of tuner for superconducting cavity[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2015: 29-32
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (902) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return