Volume 33 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
Lin Mao, Xu Haojun, Wei Xiaolong, et al. Attenuation characteristics of electromagnetic wave in inductive coupled plasma based on variation of discharge power[J]. High Power Laser and Particle Beams, 2021, 33: 065012. doi: 10.11884/HPLPB202133.200320
Citation: Lin Mao, Xu Haojun, Wei Xiaolong, et al. Attenuation characteristics of electromagnetic wave in inductive coupled plasma based on variation of discharge power[J]. High Power Laser and Particle Beams, 2021, 33: 065012. doi: 10.11884/HPLPB202133.200320

Attenuation characteristics of electromagnetic wave in inductive coupled plasma based on variation of discharge power

doi: 10.11884/HPLPB202133.200320
  • Received Date: 2020-11-26
  • Rev Recd Date: 2021-01-28
  • Available Online: 2021-02-08
  • Publish Date: 2021-06-15
  • The application of Inductively Coupled Plasma (ICP) can cause a wide range high density plasma and has great advantages in electromagnetic wave attenuation. Studying the process of interaction between ICP and electromagnetic wave, we established the electromagnetic wave propagation in inhomogeneous plasma, adopted hierarchical model for the diagnosis of the interaction of plasma and electromagnetic wave, and studied the electromagnetic wave attenuation under different conditions of input power. The experiment method of inductively coupled plasma for attenuation electromagnetic wave was proposed. Based on the model of plasma covering over the metal plate, the arch system for measurement of microwave reflectivity of plasma was established. The interaction of closed-plasma and electromagnetic wave with a bandwidth of 4−8 GHz was studied, the effect on microwave reflection of different rf power was evaluated analyzed, and the experimental measurement and calculation results were analyzed. The experimental results show that the inductively coupled plasma attenuates the electromagnetic wave in 5.92−6.8 GHz band obviously by power regulation.
  • loading
  • [1]
    Xu Shuyan, Ostrikov K N, Li Y, et al. Low-frequency, high-density, inductively coupled plasma sources: Operation and applications[J]. Physics of Plasmas, 2001, 8(5): 2549-2557. doi: 10.1063/1.1343887
    [2]
    Godyak V A, Alexandrovich B M. Plasma and electrical characteristics of inductive discharge in a magnetic field[J]. Physics of Plasmas, 2004, 11(7): 3553-3560. doi: 10.1063/1.1758946
    [3]
    戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20):1-9. (Dai Dong, Ning Wenjun, Shao Tao. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9
    [4]
    朱寒, 何湘, 陈秉岩, 等. 容性耦合射频放电等离子体的仿真模拟与实验诊断研究[J]. 电工技术学报, 2019, 34(16):3504-3511. (Zhu Han, He Xiang, Chen Bingyan, et al. Simulations and experimental diagnostic of capacitively coupled RF discharge plasma[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3504-3511
    [5]
    Lee H C, Chung C W. E-H heating mode transition in inductive discharges with different antenna sizes[J]. Physics of Plasmas, 2015, 22: 053505. doi: 10.1063/1.4916044
    [6]
    Lee H C, Chung C W. Effect of antenna size on electron kinetics in inductively coupled plasmas[J]. Physics of Plasmas, 2013, 20: 101607. doi: 10.1063/1.4823470
    [7]
    Jun H S, Chang H Y. Development of 40 MHz inductively coupled plasma source and frequency effects on plasma parameters[J]. Appl Phys Lett, 2008, 92: 041501. doi: 10.1063/1.2838306
    [8]
    Ventzek P L G, Hoekstra R J, Kushner M J. Two-dimensional modeling of high plasma density inductively coupled sources for materials processing[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1994, 12(1): 461-477.
    [9]
    Fukasawa T, Nouda T, Nakamura A, et al. RF self-bias characteristics in inductively coupled plasma[J]. Japanese Journal of Applied Physics, 1993, 32: 6076. doi: 10.1143/JJAP.32.6076
    [10]
    Amorim J, Maciel H S, Sudano J P. High-density plasma mode of an inductively coupled radio frequency discharge[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1991, 9(2): 362-365.
    [11]
    张改玲, 滑跃, 郝泽宇, 等. 13.56 MHz/2 MHz柱状感性耦合等离子体参数的对比研究[J]. 物理学报, 2019, 68:105202. (Zhang Gailing, Hua Yue, Hao Zeyu, et al. Experimental investigation of plasma parameters in 13.56 MHz/2 MHz cylindrical inductively coupled plasma[J]. Acta Physica Sinica, 2019, 68: 105202 doi: 10.7498/aps.68.20190071
    [12]
    张昀, 王波, 王荷军. 射频感应耦合等离子体朗缪双探针诊断分析[J]. 真空, 2016, 53(3):56-61. (Zhang Yun, Wang Bo, Wang Hejun. Langmuir double probe diagnostic analysis of RF inductively coupled plasma[J]. Vacuum, 2016, 53(3): 56-61
    [13]
    王荷军, 王波, 刘云辉, 等. 放电参量对射频容性耦合等离子体电子密度的影响[J]. 真空, 2017, 54(4):26-30. (Wang Hejun, Wang Bo, Liu Yunhui, et al. Influence of discharge parameters on electron density of RF capacitively coupled plasma[J]. Vacuum, 2017, 54(4): 26-30
    [14]
    Wen Deqi, Liu Wei, Gao Fei, et al. A hybrid model of radio frequency biased inductively coupled plasma discharges: description of model and experimental validation in argon[J]. Plasma Sources Science and Technology, 2016, 25: 045009. doi: 10.1088/0963-0252/25/4/045009
    [15]
    汪建. 射频电感耦合等离子体及模式转变的实验研究[D]. 合肥: 中国科学技术大学, 2014.

    Wang Jian. Experimental study on radio frequency inductively coupled plasmas and mode transition[D]. Hefei: University of Science and Technology of China, 2014).
    [16]
    桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013.

    Sang Jianhua. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013).
    [17]
    苏晨, 徐浩军, 林敏, 等. 封闭式等离子体发生器设计及其放电等离子体参数分布实验研究[J]. 高电压技术, 2013, 39(7):1668-1673. (Su Chen, Xu Haojun, Lin Min, et al. Design on closed plasma generator and experimental study on its plasma parameters distribution[J]. High Voltage Engineering, 2013, 39(7): 1668-1673 doi: 10.3969/j.issn.1003-6520.2013.07.019
    [18]
    何湘. 飞机局部等离子体隐身探索研究[D]. 南京: 南京理工大学, 2010.

    He Xiang. Studies on plasma stealth technique application in parts of plane[D]. Nanjing: Nanjing University of Science & Technology, 2010).
    [19]
    赵日康, 张紫浩, 张林, 等. 圆柱形等离子体对微波散射的数值模拟与实验研究[J]. 强激光与粒子束, 2017, 29:053001. (Zhao Rikang, Zhang Zihao, Zhang Lin, et al. Microwave scattering by inhomogeneous plasma column[J]. High Power Laser and Particle Beams, 2017, 29: 053001 doi: 10.11884/HPLPB201729.170043
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (775) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return