Volume 33 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Li Cheng, Wang Wenxing, Li Weiwei, et al. Drive laser shaping and transport system for photocathode RF gun[J]. High Power Laser and Particle Beams, 2021, 33: 094002. doi: 10.11884/HPLPB202133.210091
Citation: Li Cheng, Wang Wenxing, Li Weiwei, et al. Drive laser shaping and transport system for photocathode RF gun[J]. High Power Laser and Particle Beams, 2021, 33: 094002. doi: 10.11884/HPLPB202133.210091

Drive laser shaping and transport system for photocathode RF gun

doi: 10.11884/HPLPB202133.210091
Funds:  Hefei Advanced Light Facility R&D Project
More Information
  • To meet the requirements of Hefei Advanced Light Facility (HALF) for high quality injection beam, a photocathode RF gun is developed as the electron source of the injector in the R&D project. To obtaining an electron beam with high qualities, it is necessary to carry out experimental research on drive laser shaping and transport system. For suppressing the beam emittance growth caused by space charge force, the temporal pulse shape is modified by using birefringent crystals, while an aperture is used for spatial pulse shaping. An optical image transport system is designed to achieve high stability of the laser beam position on the photocathode. Detailed design of the optical system is presented in this paper. The experimental result shows that a quasi uniform distribution in the three-dimensional space of laser pulse is obtained, and the laser beam position jitter on the photocathode is less than 4 µm. The performance of the laser pulse meets the experiment requirements.
  • loading
  • [1]
    Akre R, Dowell D, Emma P, et al. Commissioning the linac coherent light source injector[J]. Physical Review Special Topics-Accelerators and Beams, 2008, 11: 030703. doi: 10.1103/PhysRevSTAB.11.030703
    [2]
    Zhu Pengfei, Zhu Y, Hidaka Y, et al. Femtosecond time-resolved MeV electron diffraction[J]. New Journal of Physics, 2015, 17: 063004. doi: 10.1088/1367-2630/17/6/063004
    [3]
    Xiang D, Fu F, Zhang J, et al. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 759: 74-82.
    [4]
    Yang Jinfeng, Kondoh T, Kozawa T, et al. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique[J]. Radiation Physics and Chemistry, 2006, 75(9): 1034-1040. doi: 10.1016/j.radphyschem.2005.09.016
    [5]
    Chen Han, Yan Lixin, Tian Qili, et al. Commissioning the photoinjector of a gamma-ray light source[J]. Physical Review Accelerators and Beams, 2019, 22: 053403. doi: 10.1103/PhysRevAccelBeams.22.053403
    [6]
    Kim K J. RF and space-charge effects in laser-driven RF electron guns[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 275(2): 201-218. doi: 10.1016/0168-9002(89)90688-8
    [7]
    Serafini L, Rosenzweig J B. Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: mA theory of emittance compensation[J]. Physical Review E, 1997, 55(6): 7565-7590. doi: 10.1103/PhysRevE.55.7565
    [8]
    Schwarz J, Rambo P K, Smith I C, et al. Simple temporal pulse shaping using two Pockels cells[J]. Optical Engineering, 2005, 44: 094203. doi: 10.1117/1.2052709
    [9]
    Sharma A K, Patidar R K, Raghuramaiah M, et al. Simple electro-optic technique to generate temporally flat-top laser pulses[J]. Optics Communications, 2011, 284(19): 4596-4600. doi: 10.1016/j.optcom.2011.05.061
    [10]
    Skeldon M D. Optical pulse-shaping system based on an electro-optic modulator driven by an aperture-coupled-stripline electrical-waveform generator[J]. Journal of the Optical Society of America B, 2002, 19(10): 2423-2426. doi: 10.1364/JOSAB.19.002423
    [11]
    Field J J, Durfee III C G, Squier J A, et al. Quartic-phase-limited grism-based ultrashort pulse shaper[J]. Optics Letters, 2007, 32(21): 3101-3103. doi: 10.1364/OL.32.003101
    [12]
    Weiner A M. Femtosecond pulse shaping using spatial light modulators[J]. Review of Scientific Instruments, 2000, 71(5): 1929-1960. doi: 10.1063/1.1150614
    [13]
    Weiner A M. Ultrafast optical pulse shaping: a tutorial review[J]. Optics Communications, 2011, 284(15): 3669-3692. doi: 10.1016/j.optcom.2011.03.084
    [14]
    Loos H, Dowell D, Gilevich S, et al. Temporal E-beam shaping in an S-band accelerator[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 642-644.
    [15]
    Vicario C, Ghigo A, Cialdi S, et al. Laser temporal pulse shaping experiment for SPARC photoinjector[R]. CARE-Conf-04-030-PHIN, 2004.
    [16]
    Park Y, Asghari M H, Ahn T J, et al. Transform-limited picosecond pulse shaping based on temporal coherence synthesization[J]. Optics Express, 2007, 15(15): 9584-9599. doi: 10.1364/OE.15.009584
    [17]
    Wang X T, Feng L, Lan T, et al. Drive laser temporal shaping techniques for Shanghai soft X-ray free electron laser[C]//39th International Free Electron Laser Conference. 2019: 466-468.
    [18]
    Sharma A K, Tsang T, Rao T. Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses[J]. Physical Review Special Topics-Accelerators and Beams, 2009, 12: 033501. doi: 10.1103/PhysRevSTAB.12.033501
    [19]
    Wang Dong, Yan Lixin, Huang Wenhui. UV Pulse shaping with α-BBO crystals for the photocathode RF gun[C]//Proceedings of the 7th International Particle Accelerator Conference. 2016: 4079-4081.
    [20]
    Laskin A, Laskin V. Imaging techniques with refractive beam shaping optics[C]//Proceedings of SPIE 8490, Laser Beam Shaping XIII. 2012: 84900J.
    [21]
    Laskin A, Laskin V. Beam shaping in high-power laser systems with using refractive beam shapers[C]//Proceedings of SPIE 8433, Laser Sources and Applications. 2012: 84330N.
    [22]
    Halavanau A, Ha G, Qiang G, et al. Microlens array laser transverse shaping technique for photoemission electron source[DB/OL]. arXiv preprint arXiv: 1609.01661, 2016.
    [23]
    Jin Yuhua, Hassan A, Jiang Yijian. Freeform microlens array homogenizer for excimer laser beam shaping[J]. Optics Express, 2016, 24(22): 24846-24858. doi: 10.1364/OE.24.024846
    [24]
    Tomizawa H, Dewa H, Taniuchi T, et al. Adaptive 3-D UV-laser pulse shaping system to minimize emittance for photocathode RF gun and new laser incidence system[C]//Proceedings of FEL. 2007: 298-305.
    [25]
    Gross M, Qian H J, Boonpornprasert P, et al. Emittance reduction of RF photoinjector generated electron beams by transverse laser beam shaping[J]. Journal of Physics:Conference Series, 2019, 1350: 012046. doi: 10.1088/1742-6596/1350/1/012046
    [26]
    Zhou Feng, Brachmann A, Emma P, et al. Impact of the spatial laser distribution on photocathode gun operation[J]. Physical Review Special Topics-Accelerators and Beams, 2012, 15: 090701. doi: 10.1103/PhysRevSTAB.15.090701
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (566) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return