Volume 33 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
Du Chuanbao, Mao Congguang, Cui Zhitong, et al. Design and validation test of high-altitude electromagnetic pulse conductive protector module for wireless communication system[J]. High Power Laser and Particle Beams, 2021, 33: 093005. doi: 10.11884/HPLPB202133.210155
Citation: Du Chuanbao, Mao Congguang, Cui Zhitong, et al. Design and validation test of high-altitude electromagnetic pulse conductive protector module for wireless communication system[J]. High Power Laser and Particle Beams, 2021, 33: 093005. doi: 10.11884/HPLPB202133.210155

Design and validation test of high-altitude electromagnetic pulse conductive protector module for wireless communication system

doi: 10.11884/HPLPB202133.210155
  • Received Date: 2021-04-20
  • Rev Recd Date: 2021-06-30
  • Available Online: 2021-07-28
  • Publish Date: 2021-09-15
  • To improve the anti-HEMP ability of very high frequency wireless communication systems, based on the vulnerability analysis results in the early stage, the design principle and indicators of the combination of transient discharge and steady-state filtering were determined, and the protector module sample was produced. The 20 ns/500 ns conduction injected waveform was used to carry out the pulsed conducted injection test for the protector sample. Compared with the original protector, the peak of the residual current was reduced by 60%, the start time was shortened by 75%, the action time was shortened by 80%, and the low-frequency energy limit of the injected waveform below 20 MHz was increased by 1 order of magnitude. A VHF wireless communication system was taken as the test product, and the protection validation test was carried out. The test illustrated that the residual current peak is controlled below 10 A, and the function and performance of the tested system are norm, which verifies the effectiveness of the designed protector module.
  • loading
  • [1]
    Giri D V, Hoad R, Sabath F. High-power electromagnetic effects on electronic systems[M]. London: Artech House, 2020: 20-30.
    [2]
    周璧华, 陈彬, 石立华. 电磁脉冲及其防护工程[M]. 北京: 国防工业出版社, 2003.

    Zhou Bihua, Chen Bin, Shi Lihua. Electromagnetic pulse and its protection engineering[M]. Beijing: National Defense Industry Press, 2003
    [3]
    Backstrom M G, Lovstrand K G. Susceptibility of electronic systems to high-power microwaves: summary of test experience[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(3): 396-493. doi: 10.1109/TEMC.2004.831814
    [4]
    马浪凯. 强电磁脉冲下传导防护器件瞬态响应特性研究[D]. 西安: 西安电子科技大学, 2018.

    Ma Langkai. Study on transient response characteristics of conductive protection device under strong electromagnetic pulse[D]. Xi’an: Xidian University, 2018
    [5]
    张小威. 不同快脉冲下脉冲防护器器件响应特性与防护技术研究[D]. 西安: 西安电子科技大学, 2019.

    Zhang Xiaowei. Research on response characteristics and protection technology of pulse protector under different fast pulses[D]. Xi’an: Xidian University, 2019
    [6]
    李亚南, 谭志良, 彭长振. 基于短波通信的射频前端电磁脉冲防护模块仿真与设计[J]. 电子学报, 2018, 46(6):1421-1427. (Li Ya’nan, Tan Zhiliang, Peng Changzhen. Simulation and design of RF front end electromagnetic protection module based on HF communication[J]. Acta Electronica Sinica, 2018, 46(6): 1421-1427 doi: 10.3969/j.issn.0372-2112.2018.06.022
    [7]
    李亚南, 谭志良, 宋培姣. 射频前端强电磁脉冲防护模块设计[J]. 强激光与粒子束, 2018, 30:013204. (Li Ya’nan, Tan Zhiliang, Song Peijiao. Simulation and design of RF front end electromagnetic protection module[J]. High Power Laser and Particle Beams, 2018, 30: 013204
    [8]
    王洋. 接收机前端低噪声放大器设计及其电磁脉冲防护研究[D]. 上海: 上海交通大学, 2011.

    Wang Yang. Design and electromagnetic pulse protection research of receiver front-end LNA[D]. Shanghai: Shanghai Jiaotong University, 2011
    [9]
    Mao C, Canavero F. System-level vulnerability assessment for IEMI: from fault tree analysis to Bayesian networks—part i: methodology framework[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(1): 180-187. doi: 10.1109/TEMC.2015.2484067
    [10]
    张志华. 可靠性理论及工程应用[M]. 北京: 科学出版社, 2012.

    Zhang Zhihua. Reliability theory and engineering application[M]. Beijing: Science Press, 2012
    [11]
    Du C, Liu Z, Mao C, et al. An efficient method to statistical modeling of transient response for monopole antenna[C]//Europe EMC Conference. 2018.
    [12]
    IEC 61000-2-10-1998, Electromagnetic compatibility (EMC)—Part 2-10: Environment—description of HEMP environment conducted disturbance[S].
    [13]
    樊昌信, 曹丽娜. 通信原理[M]. 北京: 国防工业出版社, 2016.

    Fan Changxin, Cao Lina. Principle of communication[M]. Beijing: National Defense Industry Press, 2016
    [14]
    楼才义, 徐建良, 杨小牛. 软件无线电原理与应用[M]. 北京: 电子工业出版社, 2014.

    Lou Caiyi, Xu Jianliang, Yang Xiaoniu. Software-defined radio: principles and practice[M]. Beijing: Electronic Industry Press, 2014
    [15]
    Rao S M, Wilton D R, Glisson A W. Electromagnetic scattering by surfaces of arbitrary shape[J]. IEEE Transactions on Antenna and Propagation, 1982, 30(3): 409-418. doi: 10.1109/TAP.1982.1142818
    [16]
    GJB8848-2016. 系统电磁环境效应试验方法[S].

    GJB8848-2016. Test method of system electromagnetic environmental effect[S].
    [17]
    谢霖燊, 吴伟, 朱湘琴. 分布式负载垂直极化有界波电磁脉冲模拟器外泄场的规律分析[J]. 强激光与粒子束, 2020, 32:055002. (Xie Linshen, Wu Wei, Zhu Xiangqin. Regularity analysis of leakage-field from vertically polarized bounded wave electromagnetic pulse simulator with distributed load[J]. High Power Laser and Particle Beams, 2020, 32: 055002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article views (742) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return