Volume 34 Issue 5
Apr.  2022
Turn off MathJax
Article Contents
Yan Hongwei. Focusing characteristics of Riemann-Silberstein vortices of edge-dislocation Gaussian beam passing through a bifocal lens[J]. High Power Laser and Particle Beams, 2022, 34: 051003. doi: 10.11884/HPLPB202234.210317
Citation: Yan Hongwei. Focusing characteristics of Riemann-Silberstein vortices of edge-dislocation Gaussian beam passing through a bifocal lens[J]. High Power Laser and Particle Beams, 2022, 34: 051003. doi: 10.11884/HPLPB202234.210317

Focusing characteristics of Riemann-Silberstein vortices of edge-dislocation Gaussian beam passing through a bifocal lens

doi: 10.11884/HPLPB202234.210317
  • Received Date: 2021-07-25
  • Accepted Date: 2022-02-19
  • Rev Recd Date: 2022-01-23
  • Available Online: 2022-03-01
  • Publish Date: 2022-05-15
  • Based on the zeros of the time-averaged complex scalar field, the complex scalar field of Riemann-Silberstein (RS) vortices generated by the edge dislocation line embedded in the Gaussian beam propagating through the bifocal lens is derived. The focal characteristics of the RS vortices are studied in detail, and the influence of the propagation distance and the focal length of the bifocal lens on the RS vortices is nalyzed. It is found that the RS vortices will move after passing through the bifocal lens, a new pair of RS vortices with opposite topological charge will be generated, and two RS vortices with opposite topological charge will gradually approach each other to annihilation. However, during the entire focusing process, the total topological charge of the RS vortices is conserved. In particular, when the RS vortices pass through an ideal lens, there are always only four RS vortices on the x-axis in the complex scalar field. As the propagation distance increases, these four RS vortices gradually approach the origin (0, 0), and then gradually move away from the origin (0,0), but the topological charge of each RS vortex has remained unchanged, thus the total topological charge is conserved.
  • loading
  • [1]
    Heckenberg N R, McDuff R, Smith C P, et al. Generation of optical phase singularities by computer-generated holograms[J]. Opt Lett, 1992, 17(3): 221-223. doi: 10.1364/OL.17.000221
    [2]
    Dennis M R, O’Holleran K, Padgett M J. Chapter 5 singular optics: optical vortices and polarization singularities[J]. Prog Opt, 2009, 53: 293-363.
    [3]
    Nye J F, Hajnal J V. The wave structure of monochromatic electromagnetic radiation[J]. Proc Roy Soc A, 1987, 409(1836): 21-36.
    [4]
    Bialynicki-Birula I, Bialynicka-Birula Z. Vortex lines of the electromagnetic field[J]. Phys Rev A, 2003, 67: 062114. doi: 10.1103/PhysRevA.67.062114
    [5]
    Kaiser G. Helicity, polarization and Riemann-Silberstein vortices[J]. J Opt A Pure Appl Opt, 2004, 6(5): S243-S245. doi: 10.1088/1464-4258/6/5/018
    [6]
    Berry M V. Riemann-Silberstein vortices for paraxial waves[J]. J Opt A Pure Appl Opt, 2004, 6(5): S175-S177. doi: 10.1088/1464-4258/6/5/005
    [7]
    Lian Xiaoxu, Deng Chunsheng, Lü Baida. Dynamic evolution of Riemann-Silberstein vortices for Gaussian vortex beams[J]. Opt Commun, 2012, 285(5): 497-502. doi: 10.1016/j.optcom.2011.10.099
    [8]
    Chen Haitao, Gao Zenghui, Yang Huajun, et al. Propagation of Riemann-Silberstein vortices through an astigmatic lens[J]. J Opt Soc Am A, 2012, 29(11): 2406-2414. doi: 10.1364/JOSAA.29.002406
    [9]
    Nye J F. The life-cycle of Riemann-Silberstein electromagnetic vortices[J]. J Opt, 2017, 19: 115002. doi: 10.1088/2040-8986/aa8c41
    [10]
    Nye J F. Perturbing the polarisation of Riemann-Silberstein electromagnetic vortices[J]. J Opt, 2019, 21: 015002. doi: 10.1088/2040-8986/aaef24
    [11]
    吕百达. 激光光学[M]. 3版. 北京: 高等教育出版社, 2003: 119-122

    Lü Baida. Laser optics[M]. 3rd ed. Beijing: Higher Education Press, 2003: 119-122
    [12]
    陈顺意, 丁攀峰, 蒲继雄. 部分相干径向偏振光束传输中相干性研究[J]. 物理学报, 2015, 64:134201. (Chen Shunyi, Ding Panfeng, Pu Jixiong. Research on the coherence of partially coherent radially polarized beam during propagation[J]. Acta Phys Sin, 2015, 64: 134201 doi: 10.7498/aps.64.134201
    [13]
    王亚东, 甘雪涛, 俱沛, 等. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构[J]. 物理学报, 2015, 64:034204. (Wang Yadong, Gan Xuetao, Ju Pei, et al. Control of topological structure in high-order optical vortices by use of noncanonical helical phase[J]. Acta Phys Sin, 2015, 64: 034204 doi: 10.7498/aps.64.034204
    [14]
    龙凤琼, 郑世杰, 李玮, 等. 线偏振相位涡旋光束的像散特性[J]. 强激光与粒子束, 2020, 32:081005. (Long Fengqiong, Zheng Shijie, Li Wei, et al. Astigmatic characteristics of linearly polarized phase vortex beam[J]. High Power Laser Part Beams, 2020, 32: 081005 doi: 10.11884/HPLPB202032.200025
    [15]
    Molina-Terriza G, Recolons J, Torner L. The curious arithmetic of optical vortices[J]. Opt Lett, 2000, 25(16): 1135-1137. doi: 10.1364/OL.25.001135
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (662) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return