Volume 34 Issue 5
Apr.  2022
Turn off MathJax
Article Contents
Liu Xiao, Yang Wankui, Wang Hao, et al. Size measurements of beryllium assemblies after long term service[J]. High Power Laser and Particle Beams, 2022, 34: 056009. doi: 10.11884/HPLPB202234.210516
Citation: Liu Xiao, Yang Wankui, Wang Hao, et al. Size measurements of beryllium assemblies after long term service[J]. High Power Laser and Particle Beams, 2022, 34: 056009. doi: 10.11884/HPLPB202234.210516

Size measurements of beryllium assemblies after long term service

doi: 10.11884/HPLPB202234.210516
  • Received Date: 2021-11-24
  • Rev Recd Date: 2022-03-30
  • Available Online: 2022-04-09
  • Publish Date: 2022-05-15
  • Beryllium is an important material as neutron reflection layers in nuclear reactors. The size change of beryllium after long term neutron irradiation has a great influence on the reactor safety. To obtain the size change of beryllium assemblies after long-time irradiation for the assessment of service performance, a set of special tools were designed and manufactured. The size change of post-irradiation beryllium assemblies was examined on a three coordinate measuring machine. The measurement results indicate that beryllium assemblies of the SPRR-300 reactor have excellent stability after 29 a irradiation, even under the maximum neutron fluence of 6.78×1021 cm−2. The section dimension has little change in local part of beryllium assemblies and the largest change is about 0.13 mm, which indicates that irradiation creep is the main reason for the dimension change of beryllium assemblies during the long-time service.
  • loading
  • [1]
    单润华, 王日清, 李满昌, 等. 高通量工程试验反应堆铍孔道在辐照上的综合利用[J]. 核动力工程, 1983, 4(5):7-15. (Shan Runhua, Wang Riqing, Li Manchang, et al. General uses of the holes in beryllium slugs in HFETR on irradiation[J]. Nuclear Power Engineering, 1983, 4(5): 7-15
    [2]
    Hoyer A. Lifetime analysis of irradiated beryllium in research reactors[D]. Columbia: University of Missouri, 2017: 1-10.
    [3]
    Snead L L, Zinkle S J. Use of beryllium and beryllium oxide in space reactors[J]. AIP Conference Proceedings, 2005, 746(1): 768-775.
    [4]
    Nie Y, Ren J, Ruan X, et al. The benchmark experiment on slab beryllium with D-T neutrons for validation of evaluated nuclear data[J]. Fusion Engineering and Design, 2016, 105: 8-14. doi: 10.1016/j.fusengdes.2016.01.049
    [5]
    Harmsen A G, Hoover M D, Seiler F A. Health risk implications of using beryllium in fusion reactors[J]. Journal of Nuclear Materials, 1984, 122(1/3): 821-826.
    [6]
    Gelles D S, Heinisch H L. Neutron damage in beryllium[J]. Journal of Nuclear Materials, 1992, 191/194: 194-198. doi: 10.1016/S0022-3115(09)80032-9
    [7]
    Nankov N, Troev T, Petrov L, et al. Positron lifetime calculations of defects in fusion irradiated beryllium[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008, 266(15): 3392-3396. doi: 10.1016/j.nimb.2008.03.240
    [8]
    Ishitsuka E, Kawamura H. Beryllium neutron irradiation study in the Japan materials testing reactor[J]. Fusion Engineering and Design, 1998, 41(1/4): 195-200.
    [9]
    王文利. 重水堆燃料铍材国产化及入堆验证试验[J]. 核动力工程, 2015, 36(5):208-210. (Wang Wenli. Beryllium localization and verification test of PHWR fuel[J]. Nuclear Power Engineering, 2015, 36(5): 208-210
    [10]
    张松宝, 杨万奎, 窦海峰. SPRR-300堆寿期后关键结构材料辐照注量的理论计算[R]. GF-A0183454G, 2013

    Zhang Songbao, Yang Wankui, Dou Haifeng. The integral flux calculation of the structural of No. 300 reactor after commission[R]. GF-A0183454G, 2013
    [11]
    杨万奎, 曾和荣, 冷军, 等. 300#研究堆首炉中央孔道中子通量密度计算[J]. 强激光与粒子束, 2012, 24(12):3001-3005. (Yang Wankui, Zeng Herong, Leng Jun, et al. Neutron flux calculation for central channel in first cycle of SPRR-300[J]. High Power Laser and Particle Beams, 2012, 24(12): 3001-3005 doi: 10.3788/HPLPB20122412.3001
    [12]
    李婷婷. 铍和氧化铍电子、弹性性质的第一性原理计算[D]. 银川: 宁夏大学, 2015: 1-20

    Li Tingting. First principle calculation of electronic and elastic properties of beryllium and beryllium oxide[D]. Yinchuan: Ningxia University, 2015: 1-20
    [13]
    Savino E J, Laciana C E. Radiation induced creep and growth of zirconium alloys[J]. Journal of Nuclear Materials, 1980, 90(1/3): 89-107.
    [14]
    Chakin V P, Posevin A O, Оbukhov A V, et al. Radiation growth of beryllium[J]. Journal of Nuclear Materials, 2009, 386/388: 206-209. doi: 10.1016/j.jnucmat.2008.12.097
    [15]
    Scaffidi-Argentina F. Tritium and helium release from neutron irradiated beryllium pebbles from the EXOTIC-8 irradiation[J]. Fusion Engineering and Design, 2001, 58/59: 641-645. doi: 10.1016/S0920-3796(01)00510-5
    [16]
    Möslang A, Pieritz R A, Boller E, et al. Gas bubble network formation in irradiated beryllium pebbles monitored by X-ray microtomography[J]. Journal of Nuclear Materials, 2009, 386/388: 1052-1055. doi: 10.1016/j.jnucmat.2008.12.258
    [17]
    Kupriyanov I B, Melder R R, Gorokhov V A. The effect of neutron irradiation on beryllium performance[J]. Fusion Engineering and Design, 2000, 51/52: 135-143. doi: 10.1016/S0920-3796(00)00306-9
    [18]
    Chakin V P, Kazakov V A, Melder R R, et al. Effects of neutron irradiation at 70-200 ℃ in beryllium[J]. Journal of Nuclear Materials, 2002, 307/311: 647-652. doi: 10.1016/S0022-3115(02)01218-7
    [19]
    Snead L L. Low-temperature low-dose neutron irradiation effects on beryllium[J]. Journal of Nuclear Materials, 2004, 326(2/3): 114-124.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views (516) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return