Volume 34 Issue 5
Apr.  2022
Turn off MathJax
Article Contents
Ma Yuhua, Li Hang, Yang Xin, et al. Mathematical model establishment, simulation and reconstruction of PGAI[J]. High Power Laser and Particle Beams, 2022, 34: 056004. doi: 10.11884/HPLPB202234.210551
Citation: Ma Yuhua, Li Hang, Yang Xin, et al. Mathematical model establishment, simulation and reconstruction of PGAI[J]. High Power Laser and Particle Beams, 2022, 34: 056004. doi: 10.11884/HPLPB202234.210551

Mathematical model establishment, simulation and reconstruction of PGAI

doi: 10.11884/HPLPB202234.210551
  • Received Date: 2021-12-08
  • Accepted Date: 2022-02-21
  • Rev Recd Date: 2022-01-27
  • Available Online: 2022-02-26
  • Publish Date: 2022-05-15
  • In the prompt gamma activation imaging, the neutron self-shielding and gamma self-absorption effect inside the sample will cause uneven distribution of the measurement results. To solve the problem of the biased distribution in the prompt gamma activation imaging, the influence of the neutron field inside the sample and the self-absorption effect of gamma were studied, and the transport process of neutrons and gamma rays was theoretically deduced. A mathematical model for correcting the biased distribution and image reconstruction was established. The Monte Carlo method was used to simulate the prompt gamma activation imaging of Fe and H elements, and the mathematical model was used to reconstruct the element images. The results show that the influence of neutron self-shielding and γ self-absorption effect in prompt gamma activation imaging has been significantly corrected, and the content distribution of Fe and H elements can be accurately reconstructed using this mathematical model, which verify the validity of the mathematical model.
  • loading
  • [1]
    Kis Z, Szentmiklósi L, Schulze R, et al. Prompt gamma activation imaging (PGAI)[M]//Kardjilov N, Festa G. Neutron Methods for Archaeology and Cultural Heritage. Cham: Springer International Publishing, 2017.
    [2]
    Canella L, Kudějová P, Schulze R, et al. PGAA, PGAI and NT with cold neutrons: test measurement on a meteorite sample[J]. Applied Radiation and Isotopes, 2009, 67(12): 2070-2074. doi: 10.1016/j.apradiso.2009.05.008
    [3]
    杨鑫, 李润东, 王冠博, 等. 瞬发伽马活化分析与中子层析照相联合测量技术[J]. 同位素, 2017, 30(3):153-163. (Yang Xin, Li Rundong, Wang Guanbo, et al. Combination of prompt gamma-ray activation analysis and neutron tomography[J]. Journal of Isotopes, 2017, 30(3): 153-163 doi: 10.7538/tws.2017.youxian.019
    [4]
    Paul R L, Lindstrom R M. Prompt gamma-ray activation analysis: fundamentals and applications[J]. Journal of Radioanalytical and Nuclear Chemistry, 2000, 243(1): 181-189. doi: 10.1023/A:1006796003933
    [5]
    Szentmiklósi L, Révay Z, Belgya T, et al. Combining prompt gamma activation analysis and off-line counting[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 278(3): 657-660. doi: 10.1007/s10967-008-1404-1
    [6]
    Belgya T, Kis Z, Szentmiklósi L, et al. A new PGAI-NT setup at the NIPS facility of the Budapest research reactor[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 278(3): 713-718. doi: 10.1007/s10967-008-1510-0
    [7]
    Kudejova P, Meierhofer G, Zeitelhack K, et al. The new PGAA and PGAI facility at the research reactor FRM II in Garching near Munich[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 278(3): 691-695. doi: 10.1007/s10967-008-1506-9
    [8]
    Söllradl S, Mühlbauer M J, Kudejova P, et al. Development and test of a neutron imaging setup at the PGAA instrument at FRM II[J]. Physics Procedia, 2015, 69: 130-137. doi: 10.1016/j.phpro.2015.07.019
    [9]
    耿书群, 贾文宝, 黑大千, 等. PGAI瞬发伽玛射线活化成像技术理想化模型的模拟[J]. 强激光与粒子束, 2018, 30:016005. (Geng Shuqun, Jia Wenbao, Hei Daqian, et al. Prompt gamma activation imaging technology under idealized model[J]. High Power Laser and Particle Beams, 2018, 30: 016005 doi: 10.11884/HPLPB201830.170246
    [10]
    黄孟, 朱剑钰, 伍钧, 等. 基于JMCT软件的中子活化数值模拟程序的开发和检验[J]. 强激光与粒子束, 2022, 34:026016. (Huang Meng, Zhu Jianyu, Wu Jun, et al. Development and test of neutron activation simulation program based on JMCT software[J]. High Power Laser and Particle Beams, 2022, 34: 026016
    [11]
    Degenaar I H, Blaauw M, Bode P, et al. Validation of MCNP for large-sample thermal-beam prompt-gamma neutron activation analysis[J]. Journal of Radioanalytical and Nuclear Chemistry, 2004, 260(2): 311-315. doi: 10.1023/B:JRNC.0000027102.53688.54
    [12]
    Blaauw M, Mackey E A M. Neutron self-shielding in hydrogenous samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 1997, 216(1): 65-68. doi: 10.1007/BF02034497
    [13]
    Blaauw M, Belgya T. Neutron self-shielding correction for prompt gamma neutron activation analysis of large samples[J]. Journal of Radioanalytical and Nuclear Chemistry, 2005, 265(2): 257-259. doi: 10.1007/s10967-005-0817-3
    [14]
    丁大钊, 叶春堂, 赵志祥. 中子物理学: 原理、方法与应用[M]. 北京: 原子能出版社, 2001

    Ding Dazhao, Ye Chuntang, Zhao Zhixiang. Neutron physics[M]. Beijing: Atomic Energy Press, 2001
    [15]
    王德人. 非线性方程组解法与最优化方法[M]. 北京: 人民教育出版社, 1979

    Wang Deren. Solutions and optimization methods of nonlinear equations[M]. Beijing: People's Education Press, 1979
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (893) PDF downloads(150) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return