Volume 34 Issue 5
Apr.  2022
Turn off MathJax
Article Contents
Xu Wenting, Li Jie, Liu Yiyang, et al. Investigation into preparation of thin-walled polystyrene hollow microspheres for ICF[J]. High Power Laser and Particle Beams, 2022, 34: 052002. doi: 10.11884/HPLPB202234.210557
Citation: Xu Wenting, Li Jie, Liu Yiyang, et al. Investigation into preparation of thin-walled polystyrene hollow microspheres for ICF[J]. High Power Laser and Particle Beams, 2022, 34: 052002. doi: 10.11884/HPLPB202234.210557

Investigation into preparation of thin-walled polystyrene hollow microspheres for ICF

doi: 10.11884/HPLPB202234.210557
  • Received Date: 2021-12-11
  • Accepted Date: 2022-04-01
  • Rev Recd Date: 2022-03-15
  • Available Online: 2022-04-06
  • Publish Date: 2022-05-15
  • As an effective way to explore controlled nuclear fusion, laser inertial confinement fusion (ICF) is expected to obtain clean and pollution-free energy. Thin-walled polystyrene (PS) hollow microspheres are a type of microspheres urgently needed in ICF physics experiments. Thin-walled hollow microspheres are easy to crack while drying and being used due to the increase in diameter-to-thickness ratio (diameter/wall thickness). In this work, the influence of the PS materials on the quality of thin-walled microspheres was studied, and the mechanism was discussed. The results show that when the oil phase (PS) mass fraction was 4%, the stability of W1/O/W2 composite emulsion particles gradually increased with the increase of oil phase viscosity; when the oil phase mass fraction was not less than 8%, the stability of compound droplets was fine. There is no significant difference in the surface roughness of the corresponding microspheres. The sphericity and wall thickness uniformity of microspheres decreased with the increase of initial oil phase viscosity. In the drying process, the cracking rate of microspheres decreased with the increase of oil phase viscosity. The rate of microsphere cracking decreases as the mechanical properties of the raw material improves. To compensate for the adverse effect of the increase in oil phase viscosity on the sphericity and uniformity of the wall thickness of the microspheres, fluorobenzene (FB) droplets were introduced into the external water phase to reduce the solidification rate.
  • loading
  • [1]
    张民, 张正炜, 张艳红. 液滴微流控技术制备功能型微球的研究进展[J]. 高校化学工程学报, 2020, 34(5):1102-1112. (Zhang Min, Zhang Zhengwei, Zhang Yanhong. Research progress on functional microsphere preparation by droplet microfluidic technology[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(5): 1102-1112 doi: 10.3969/j.issn.1003-9015.2020.05.002
    [2]
    Wang Jianmei, Wang Xueying, Li Yan, et al. Preparation and properties of magnetic polymer microspheres[J]. Polymer, 2020, 199: 122569. doi: 10.1016/j.polymer.2020.122569
    [3]
    王月桐, 商珞然, 赵远锦. 基于液滴界面不稳定性的表面粗糙聚合物微球的制备及其细胞捕获应用[J]. 物理学报, 2020, 69:084701. (Wang Yuetong, Shang Luoran, Zhao Yuanjin. Surface-textured polymer microspheres generated through interfacial instabilities of microfluidic droplets for cell capture[J]. Acta Physica Sinica, 2020, 69: 084701 doi: 10.7498/aps.69.20200362
    [4]
    高莎莎, 吴小军, 何智兵, 等. 激光惯性约束聚变靶制备技术研究进展[J]. 强激光与粒子束, 2020, 32:032001. (Gao Shasha, Wu Xiaojun, He Zhibing, et al. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32: 032001
    [5]
    门艳茹, 桑晓明, 杨贤金, 等. 惯性约束聚变靶丸的研究进展[J]. 材料导报, 2004, 18(s2):284-286,290. (Men Yanru, Sang Xiaoming, Yang Xianjin, et al. Research progress of target capsule for inertial confinement fusion[J]. Materials Review, 2004, 18(s2): 284-286,290
    [6]
    张林, 涂海燕, 唐永健, 等. ICF靶PVA-PS双层空心微球的研制[J]. 高分子材料科学与工程, 1997, 13(s1):137-139. (Zhang Lin, Tu Haiyan, Tang Yongjian, et al. Fabrication of PVA-PS double-layered shells for ICF targtets[J]. Polymeric Materials Science and Engineering, 1997, 13(s1): 137-139
    [7]
    许晓颖, 简科, 纪小宇. 靶丸用空心微球制备技术研究进展[J]. 硅酸盐学报, 2019, 47(12):1784-1791. (Xu Xiaoying, Jian Ke, Ji Xiaoyu. Research progress on preparation technology of hollow microspheres for targets[J]. Journal of the Chinese Ceramic Society, 2019, 47(12): 1784-1791
    [8]
    Arriaga L R, Amstad E, Weitz D A. Scalable single-step microfluidic production of single-core double emulsions with ultra-thin shells[J]. Lab on a Chip, 2015, 15(16): 3335-3340. doi: 10.1039/C5LC00631G
    [9]
    Nakano H, Fukuda T. Fabrication of a thin-walled plastic shell using emulsion technique[J]. Fusion Technology, 1999, 35(2): 189-193. doi: 10.13182/FST99-A11963920
    [10]
    潘大伟, 杨璨, 李洁, 等. 聚α-甲基苯乙烯空心微球的开裂机理[J]. 高分子材料科学与工程, 2019, 35(4):47-51. (Pan Dawei, Yang Can, Li Jie, et al. Formation mechanisms of crack on surface of poly-alpha-methylstyrene shells[J]. Polymer Materials Science & Engineering, 2019, 35(4): 47-51
    [11]
    Pan Dawei, Huang Weixing, Chen Qiang, et al. Investigation of craze and cracks of polystyrene shells during drying process[J]. Fusion Science and Technology, 2018, 73(1): 59-67. doi: 10.1080/15361055.2017.1372678
    [12]
    Wagner H N R, Hühne C, Zhang J, et al. On the imperfection sensitivity and design of spherical domes under external pressure[J]. International Journal of Pressure Vessels and Piping, 2020, 179: 104015. doi: 10.1016/j.ijpvp.2019.104015
    [13]
    Gentekos D T, Sifri R J, Fors B P. Controlling polymer properties through the shape of the molecular-weight distribution[J]. Nature Reviews Materials, 2019, 4(12): 761-774. doi: 10.1038/s41578-019-0138-8
    [14]
    Liu Meifang, Liu Yiyang, Li Jie, et al. Improvement of sphericity of thick-walled polystyrene shell[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 484: 463-470. doi: 10.1016/j.colsurfa.2015.08.031
    [15]
    Chen Qiang, Huang Yong, Liu Meifang, et al. Parabolic effects of viscosity on dispersion and stability of millimeter-scale W1/O/W2 double droplets for ICF polymer shells[J]. Journal of Dispersion Science and Technology, 2021,doi: 10.1080/01932691.2021.1883441.
    [16]
    Park J I, Saffari A, Kumar S, et al. Microfluidic synthesis of polymer and inorganic particulate materials[J]. Annual Review of Materials Research, 2010, 40: 415-443. doi: 10.1146/annurev-matsci-070909-104514
    [17]
    Liu Meifang, Chen Sufen, Qi Xiaobo, et al. Improvement of wall thickness uniformity of thick-walled polystyrene shells by density matching[J]. Chemical Engineering Journal, 2014, 241: 466-476. doi: 10.1016/j.cej.2013.08.120
    [18]
    Liu Meifang, Su Lin, Li Jie, et al. Investigation of spherical and concentric mechanism of compound droplets[J]. Matter and Radiation at Extremes, 2016, 1(4): 213-223. doi: 10.1016/j.mre.2016.07.002
    [19]
    Liu Meifang, Ai Xing, Liu Yiyang, et al. Fabrication of solid CH-CD multilayer microspheres for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2021, 6: 025901. doi: 10.1063/5.0033103
    [20]
    Chen Qiang, Chen Sufen, Liu Meifang, et al. Influence of fluorobenzene mass transfer on the qualities of poly-α-methylstyrene shells[J]. RSC Advances, 2018, 8(7): 3687-3693. doi: 10.1039/C7RA09799A
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article views (587) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return