Volume 34 Issue 10
Aug.  2022
Turn off MathJax
Article Contents
Jiang Bocheng, Tang Chuanxiang, Feng Chao, et al. Storage ring based coherent light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104001. doi: 10.11884/HPLPB202234.220047
Citation: Jiang Bocheng, Tang Chuanxiang, Feng Chao, et al. Storage ring based coherent light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104001. doi: 10.11884/HPLPB202234.220047

Storage ring based coherent light sources

doi: 10.11884/HPLPB202234.220047
  • Received Date: 2022-02-17
  • Rev Recd Date: 2022-04-10
  • Available Online: 2022-04-21
  • Publish Date: 2022-08-22
  • Synchrotron radiation from an electron storage ring holds many advantages such as stability, broad spectrum, multi-users supporting. However, it lacks coherence. When the coherent radiation is produced from a storage ring, not only the coherence of the light is enhanced, but also the flux, brightness and the energy resolution of the light can be remarkably improved. As the flux is further increased, the power of the radiation may reach the requirement of industry. This paper presents a review of various kinds of electron storage ring based coherent light sources and gives an outlook of its development.
  • loading
  • [1]
    Elder F R, Gurewitsch A M, Langmuir R V, et al. Radiation from electrons in a synchrotron[J]. Physical Review, 1947, 71: 829.
    [2]
    赵振堂. 先进X射线光源加速器原理与关键技术[M]. 上海: 上海交通大学出版社, 2021

    Zhao Zhentang. Principles and key technologies of advanced X-ray light source accelerators[M]. Shanghai: Shanghai Jiao Tong University Press, 2021
    [3]
    Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(5): 843-855. doi: 10.1107/S1600577514011515
    [4]
    Jankowiak A, Wüstefeld G. Low-α operation of BESSY II and future plans for an alternating bunch length scheme BESSYVSR[J]. Synchrotron Radiation News, 2013, 26(3): 22-24. doi: 10.1080/08940886.2013.791212
    [5]
    Byrd J M, Loftsdóttir Á, Venturini M, et al. Stable CSR in storage rings: a model[R]. LBNL-56777, 2005.
    [6]
    Byrd J M, Leemans W P, Loftsdottir A, et al. Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring[J]. Physical Review Letters, 2002, 89: 224801. doi: 10.1103/PhysRevLett.89.224801
    [7]
    Venturini M, Warnock R. Bursts of coherent synchrotron radiation in electron storage rings: a dynamical model[J]. Physical Review Letters, 2002, 89: 224802. doi: 10.1103/PhysRevLett.89.224802
    [8]
    Schoenlein R W, Chattopadhyay S, Chong H H W, et al. Generation of femtosecond pulses of synchrotron radiation[J]. Science, 2000, 287(5461): 2237-2240. doi: 10.1126/science.287.5461.2237
    [9]
    Ingold G, Beaud P, Johnson S L, et al. Technical report: FEMTO: a sub-ps tunable hard X-ray undulator source for laser/X-ray pump-probe experiments at the SLS[J]. Synchrotron Radiation News, 2007, 20(5): 35-39. doi: 10.1080/08940880701631377
    [10]
    Zholents A A, Zolotorev M S. Femtosecond X-ray pulses of synchrotron radiation[J]. Physical Review Letters, 1996, 76(6): 912-915. doi: 10.1103/PhysRevLett.76.912
    [11]
    Billardon M, Elleaume P, Ortega J M, et al. First operation of a storage-ring free-electron laser[J]. Physical Review Letters, 1983, 51(18): 1652-1655. doi: 10.1103/PhysRevLett.51.1652
    [12]
    Girard B, Lapierre Y, Ortega J M, et al. Optical frequency multiplication by an optical klystron[J]. Physical Review Letters, 1984, 53(25): 2405-2408. doi: 10.1103/PhysRevLett.53.2405
    [13]
    Couprie M E, Billardon M, Velghe M, et al. Free-electron-laser oscillation on the super-ACO storage ring at Orsay[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1990, 296(1/3): 13-19.
    [14]
    Couprie M E, Velghe M, Prazeres R, et al. Results and analysis of free-electron-laser oscillation in a high-energy storage ring[J]. Physical Review A, 1991, 44(2): 1301-1315. doi: 10.1103/PhysRevA.44.1301
    [15]
    Yamada K, Yamazaki T, Sugiyama S, et al. Visible oscillation of storage-ring free electron laser on TERAS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 318(1/3): IN1,33-37.
    [16]
    Litvinenko V N, Burnham B, Emamian M, et al. Gamma-ray production in a storage ring free-electron laser[J]. Physical Review Letters, 1997, 78(24): 4569-4572. doi: 10.1103/PhysRevLett.78.4569
    [17]
    Yamazaki T, Yamada K, Sugiyama S, et al. First lasing of the NIJI-IV storage-ring free-electron laser[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 331(1/3): 27-33.
    [18]
    Deacon D A G, Billardon M, Elleaume P, et al. Optical klystron experiments for the ACO storage ring free electron laser[J]. Applied Physics B, 1984, 34(4): 207-219. doi: 10.1007/BF00697637
    [19]
    Litvinenko V N, Park S H, Pinayev I V, et al. Operation of the OK-4/Duke storage ring FEL below 200 nm[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 475(1/3): 195-204.
    [20]
    Wu Y K, Vinokurov N A, Mikhailov S, et al. High-gain lasing and polarization switch with a distributed optical-klystron free-electron laser[J]. Physical Review Letters, 2006, 96: 224801. doi: 10.1103/PhysRevLett.96.224801
    [21]
    Yamanaka C. Free electron laser: technical issues and prospects in Japan[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 331(1/3): 191-198.
    [22]
    Khan S, Bakr M, Höner M, et al. Coherent harmonic generation at DELTA: a new facility for ultrashort pulses in the VUV and THz regime[J]. Synchrotron Radiation News, 2011, 24(5): 18-23. doi: 10.1080/08940886.2011.618092
    [23]
    陈念, 徐宏亮, 刘金英, 等. 储存环相干谐波自由电子激光器新光学速调管工作状态分析[J]. 强激光与粒子束, 2003, 15(6):524-528

    Chen Nian, Xu Hongliang, Liu Jinying, et al. Working condition of reconstructed optical klystron of CHG-SRFEL[J]. High Power Laser and Particle Beams, 2003, 15(6): 524-528
    [24]
    Yu Lihua. Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers[J]. Physical Review A, 1991, 44(8): 5178-5193. doi: 10.1103/PhysRevA.44.5178
    [25]
    Stupakov G. Using the beam-echo effect for generation of short-wavelength radiation[J]. Physical Review Letters, 2009, 102: 074801. doi: 10.1103/PhysRevLett.102.074801
    [26]
    Xiang Dao, Stupakov G. Echo-enabled harmonic generation free electron laser[J]. Physical Review Special Topics—Accelerators and Beams, 2009, 12: 030702. doi: 10.1103/PhysRevSTAB.12.030702
    [27]
    Xiang Dao, Wan Weishi. Generating ultrashort coherent soft X-ray radiation in storage rings using angular-modulated electron beams[J]. Physical Review Letters, 2010, 104: 084803. doi: 10.1103/PhysRevLett.104.084803
    [28]
    Stupakov G. Frequency multiplication using coherent radiation of a ‘‘snake’’ beam[J]. Physical Review Accelerators and Beams, 2013, 16: 010702. doi: 10.1103/PhysRevSTAB.16.010702
    [29]
    Evain C, Loulergue A, Nadji A, et al. Soft X-ray femtosecond coherent undulator radiation in a storage ring[J]. New Journal of Physics, 2012, 14: 023003. doi: 10.1088/1367-2630/14/2/023003
    [30]
    Deng Haixiao, Feng Chao. Using off-resonance laser modulation for beam-energy-spread cooling in generation of short-wavelength radiation[J]. Physical Review Letters, 2013, 111: 084801. doi: 10.1103/PhysRevLett.111.084801
    [31]
    Feng Chao, Deng Haixiao, Wang Dong, et al. Phase-merging enhanced harmonic generation free-electron laser[J]. New Journal of Physics, 2014, 16: 043021. doi: 10.1088/1367-2630/16/4/043021
    [32]
    Feng Chao, Zhao Zhentang. A storage ring based free-electron laser for generating ultrashort coherent EUV and X-ray radiation[J]. Scientific Reports, 2017, 7: 4724. doi: 10.1038/s41598-017-04962-5
    [33]
    Wang Xiaofan, Feng Chao, Liu Tao, et al. Angular dispersion enhanced prebunch for seeding ultrashort and coherent EUV and soft X-ray free-electron laser in storage rings[J]. Journal of Synchrotron Radiation, 2019, 26(3): 677-684. doi: 10.1107/S1600577519002674
    [34]
    Li Changliang, Feng Chao, Jiang Bocheng. Extremely bright coherent synchrotron radiation production in a diffraction-limited storage ring using an angular dispersion-induced microbunching scheme[J]. Physical Review Accelerators and Beams, 2020, 23: 110701. doi: 10.1103/PhysRevAccelBeams.23.110701
    [35]
    Li Changliang, Jiang Bocheng, Feng Chao, et al. Lattice design for angular dispersion enhanced microbunching in storage rings[J]. Journal of Instrumentation, 2021, 16: P03004. doi: 10.1088/1748-0221/16/03/P03004
    [36]
    Liu Weihang, Zhou Guanqun, Jiao Yi. Generating femtosecond coherent X-ray pulses in a diffraction-limited storage ring with the echo-enabled harmonic generation scheme[J]. Nuclear Science and Techniques, 2018, 29: 143. doi: 10.1007/s41365-018-0476-z
    [37]
    Liu Weihang, Wu Yi, Jiao Yi, et al. Generation of two-color polarization-adjustable radiation pulses for storage ring light source[J]. Nuclear Science and Techniques, 2019, 30: 66. doi: 10.1007/s41365-019-0578-2
    [38]
    Hwang J G, Schiwietz G, Abo-Bakr M, et al. Generation of intense and coherent sub-femtosecond X-ray pulses in electron storage rings[J]. Scientific Reports, 2020, 10: 10093. doi: 10.1038/s41598-020-67027-0
    [39]
    Huang Nanshun, Deng Haixiao, Liu Bo, et al. Features and futures of X-ray free-electron lasers[J]. The Innovation, 2021, 2: 100097.
    [40]
    Agapov I. Feasibility of a ring FEL at low emittance storage rings[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 793: 35-40.
    [41]
    Kim K J, Shvyd’ko Y, Reiche S. A proposal for an X-ray free-electron laser oscillator with an energy-recovery linac[J]. Physical Review Letters, 2008, 100: 244802. doi: 10.1103/PhysRevLett.100.244802
    [42]
    Huang Zhirong, Ding Yuantao, Schroeder C B. Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator[J]. Physical Review Letters, 2012, 109: 204801. doi: 10.1103/PhysRevLett.109.204801
    [43]
    Lindberg R, Kim K J, Cai Y, et al. Transverse gradient undulators for a storage ring X-ray FEL oscillator[C]//Proceedings of FEL 2013. New York, NY, USA, 2013: 740-748.
    [44]
    Agapov I, Chae Y C, Hillert W. Low gain FEL oscillator option for PETRA IV[C]//Proceedings of the 9th International Particle Accelerator Conference. Vancouver, BC, Canada: JACoW Publishing, 2018: 1420-1422.
    [45]
    Cai Yunhai, Ding Yuantao, Hettel R, et al. An X-ray free electron laser driven by an ultimate storage ring[J]. Synchrotron Radiation News, 2013, 26(3): 39-41. doi: 10.1080/08940886.2013.791216
    [46]
    Di Mitr S. One way only to synchrotron light sources upgrade?[J]. Journal of Synchrotron Radiation, 2018, 25: 1323-1334. doi: 10.1107/S160057751800810X
    [47]
    Di Mitri S, Cornacchia M, Diviacco B, et al. Bridging the gap of storage ring light sources and linac-driven free-electron lasers[J]. Physical Review Accelerators and Beams, 2021, 24: 060702. doi: 10.1103/PhysRevAccelBeams.24.060702
    [48]
    Li Changliang, Feng Chao, Jiang Bocheng, et al. Lattice design for the reversible SSMB[C]//Proceedings of the 10th International Particle Accelerator Conference. Melbourne, Australia: JACoW Publishing, 2019: 1507-1509.
    [49]
    KEK. KEK report 2020-4[R].
    [50]
    Jiang Bocheng, Feng Chao, Li Changliang, et al. A synchrotron-based kilowatt-level radiation source for EUV lithography[J]. Scientific Reports, 2022, 12: 3325. doi: 10.1038/s41598-022-07323-z
    [51]
    Ratner D F, Chao A W. Steady-state microbunching in a storage ring for generating coherent radiation[J]. Physical Review Letters, 2010, 105: 154801. doi: 10.1103/PhysRevLett.105.154801
    [52]
    Deng X J, Chao A W, Feikes J, et al. Single-particle dynamics of microbunching[J]. Physical Review Accelerators and Beams, 2020, 23: 044002. doi: 10.1103/PhysRevAccelBeams.23.044002
    [53]
    Deng X J, Chao A W, Huang W H, et al. Courant-Snyder formalism of longitudinal dynamics[J]. Physical Review Accelerators and Beams, 2021, 24: 094001. doi: 10.1103/PhysRevAccelBeams.24.094001
    [54]
    Deng X J, Huang W H, Li Z Z, et al. Harmonic generation and bunch compression based on transverse-longitudinal coupling[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1019: 165859. doi: 10.1016/j.nima.2021.165859
    [55]
    Tang Chuanxiang, Deng Xiujie, Huang Wenhui, et al. An overview of the progress on SSMB[C]//Proceedings of the 60th ICFA Advanced Beam Dynamics Workshop on Future Light Sources. Shanghai, China: JACoW Publishing, 2018: 166-170.
    [56]
    Zhang Y, Deng X J, Pan Z L, et al. Ultralow longitudinal emittance storage rings[J]. Physical Review Accelerators and Beams, 2021, 24: 090701. doi: 10.1103/PhysRevAccelBeams.24.090701
    [57]
    Deng Xiujie, Chao A, Feikes J, et al. Experimental demonstration of the mechanism of steady-state microbunching[J]. Nature, 2021, 590(7847): 576-579. doi: 10.1038/s41586-021-03203-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (1158) PDF downloads(294) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return