Volume 34 Issue 8
Jul.  2022
Turn off MathJax
Article Contents
Kuang Yuanyuan, Lu Yan. Study on preheating ablative effects of two-mode Rayleigh-Taylor instability[J]. High Power Laser and Particle Beams, 2022, 34: 082203. doi: 10.11884/HPLPB202234.220133
Citation: Kuang Yuanyuan, Lu Yan. Study on preheating ablative effects of two-mode Rayleigh-Taylor instability[J]. High Power Laser and Particle Beams, 2022, 34: 082203. doi: 10.11884/HPLPB202234.220133

Study on preheating ablative effects of two-mode Rayleigh-Taylor instability

doi: 10.11884/HPLPB202234.220133
  • Received Date: 2022-04-25
  • Rev Recd Date: 2022-05-12
  • Available Online: 2022-05-18
  • Publish Date: 2022-07-20
  • Aiming at the growth of ablative Rayleigh-Taylor instability with two perturbations, the evolutions of the amplitudes of high-order harmonics excited by two-mode coupling under different preheating conditions are studied by using a high-precision numerical simulation method. When the fundamental modes are a long-wavelength and a short-wavelength mode, the long-wavelength modes of the excited harmonics are dominant, while the development of short-wavelength modes are obviously suppressed; when the fundamental modes are two short-wavelength modes, many fast-growing and long-wavelength modes are excited, and the growth of short-wavelength modes are in the form of small oscillation. By comparing the two different two-mode coupling cases, it is found that the long-wavelength structures are dominant in the weakly nonlinear stage. Especially, in the two short-wavelength modes coupling case, the bubbles and spikes show long-wavelength structures which are different from the two fundamental modes. By further comparing the three preheating ablative effects, it is found that the higher the preheat degree is, the more the coupled harmonics growth will be weakened. It is of great significance to control the development of ablative Rayleigh-Taylor instability in inertial confinement fusion engineering.
  • loading
  • [1]
    Taylor G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950, 201(1065): 192-196.
    [2]
    Strutt J W. ART. 100—Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[M]//Strutt J W. Scientific Papers. Cambridge: Cambridge University Press, 1900: 200-207.
    [3]
    Sharp D H. An overview of Rayleigh-Taylor instability[J]. Physica D: Nonlinear Phenomena, 1984, 12(1/3): 3-18.
    [4]
    Bodner S E. Rayleigh-Taylor instability and laser-pellet fusion[J]. Physical Review Letters, 1974, 33(13): 761-764. doi: 10.1103/PhysRevLett.33.761
    [5]
    Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) application[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
    [6]
    Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 1995, 2(11): 3933-4024. doi: 10.1063/1.871025
    [7]
    Takabe H, Mima K, Montierth L, et al. Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma[J]. Physics of Fluids, 1985, 28(12): 3676. doi: 10.1063/1.865099
    [8]
    Sanz J. Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion[J]. Physical Review E, 1996, 53(4): 4026-4045. doi: 10.1103/PhysRevE.53.4026
    [9]
    Roberts M S, Jacobs J W. The effects of forced small-wavelength, finite-bandwidth initial perturbations and miscibility on the turbulent Rayleigh-Taylor instability[J]. Journal of Fluid Mechanics, 2016, 787: 50-83. doi: 10.1017/jfm.2015.599
    [10]
    Zhang H, Betti R, Gopalaswamy V, et al. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers[J]. Physical Review E, 2018, 97: 011203. doi: 10.1103/PhysRevE.97.011203
    [11]
    Zhao Kaige, Xue Chuang, Wang Lifeng, et al. Two-dimensional thin shell model for the nonlinear Rayleigh-Taylor instability in spherical geometry[J]. Physics of Plasmas, 2019, 26: 022710. doi: 10.1063/1.5079316
    [12]
    Qiao Xiumei, Lan Ke. Novel target designs to mitigate hydrodynamic instabilities growth in inertial confinement fusion[J]. Physical Review Letters, 2021, 126: 185001. doi: 10.1103/PhysRevLett.126.185001
    [13]
    Bud’ko A B, Liberman M A. Stabilization of the Rayleigh-Taylor instability by convection in smooth density gradient: Wentzel-Kramers-Brillouin analysis[J]. Physics of Fluids B: Plasma Physics, 1992, 4(11): 3499-3506. doi: 10.1063/1.860357
    [14]
    Betti R, Goncharov V N, McCrory R L, et al. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion[J]. Physics of Plasmas, 1998, 5(5): 1446-1454. doi: 10.1063/1.872802
    [15]
    Lewis D J. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950, 202(1068): 81-96.
    [16]
    Birkhoff G. Taylor instability and laminar mixing[R]. Los Alamos: Las Alamos Scientific Lab. , 1954.
    [17]
    Birkhoff G, Bellman R, Lin C C. Hydrodynamic instability[M]. New York: Am. Math. Soc. , 1962: 55-76.
    [18]
    张维岩, 叶文华, 吴俊峰, 等. 激光间接驱动聚变内爆流体不稳定性研究[J]. 中国科学:物理学 力学 天文学, 2014, 44(1):1-23. (Zhang Weiyan, Ye Wenhua, Wu Junfeng, et al. Hydrodynamic instabilities of laser indirect-drive inertial-confinement-fusion implosion[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(1): 1-23

    Zhang Weiyan, Ye Wenhua, Wu Junfeng, et al. Hydrodynamic instabilities of laser indirect-drive inertial-confinement-fusion implosion[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(1): 1-23
    [19]
    Ye Wenhua, Zhang Weiyan, He Xiantu. Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number[J]. Physical Review E, 2002, 65: 057401. doi: 10.1103/PhysRevE.65.057401
    [20]
    叶文华, 张维岩, 贺贤土. 烧蚀瑞利-泰勒不稳定性线性增长率的预热致稳公式[J]. 物理学报, 2000, 49(4):762-767. (Ye Wenhua, Zhang Weiyan, He Xiantu. Preheating stabilization formula of linear growth rate for ablative Rayleigh-Taylor instability[J]. Acta Physical Sinica, 2000, 49(4): 762-767 doi: 10.3321/j.issn:1000-3290.2000.04.032

    Ye Wenhua, Zhang Weiyan, He Xiantu. Preheating stabilization formula of linear growth rate for ablative Rayleigh-Taylor instability[J]. Acta Physical Sinica, 2000, 49(4): 762-767 doi: 10.3321/j.issn:1000-3290.2000.04.032
    [21]
    Xia Hua, Shats M G. Spectral energy transfer and generation of turbulent structures in toroidal plasma[J]. Physics of Plasmas, 2004, 11(2): 561-571. doi: 10.1063/1.1637607
    [22]
    Wang Lifeng, Ye Wenhua, Li Yingjun. Interface width effect on the classical Rayleigh–Taylor instability in the weakly nonlinear regime[J]. Physics of Plasmas, 2010, 17: 052305. doi: 10.1063/1.3396369
    [23]
    Garnier J, Raviart P A, Cherfils-Clérouin C, et al. Weakly nonlinear theory for the ablative Rayleigh-Taylor instability[J]. Physical Review Letters, 2003, 90: 185003. doi: 10.1103/PhysRevLett.90.185003
    [24]
    Verdon C P, McCrory R L, Morse R L, et al. Nonlinear effects of multifrequency hydrodynamic instabilities on ablatively accelerated thin shells[J]. Physics of Fluids, 1982, 25(9): 1653-1674. doi: 10.1063/1.863925
    [25]
    Dahlburg J P, Gardner J H. Ablative Rayleigh-Taylor instability in three dimensions[J]. Physical Review A, 1990, 41(10): 5695-5698. doi: 10.1103/PhysRevA.41.5695
    [26]
    Xin Jingfei, Yan Rui, Wan Zhenhua, et al. Two mode coupling of the ablative Rayleigh-Taylor instabilities[J]. Physics of Plasmas, 2019, 26: 032703. doi: 10.1063/1.5070103
    [27]
    Hasegawa S, Nishihara K. Mode coupling theory in ablative Rayleigh-Taylor instability[J]. Physics of Plasmas, 1995, 2(12): 4606-4616. doi: 10.1063/1.870950
    [28]
    Ye Wenhua, Wang Lifeng, He Xiantu. Spike deceleration and bubble acceleration in the ablative Rayleigh-Taylor instability[J]. Physics of Plasmas, 2010, 17: 122704. doi: 10.1063/1.3497006
    [29]
    Fan Zhengfeng, Luo Jisheng, Ye Wenhua. Compressible Rayleigh-Taylor instability with preheat in inertial confinement fusion[J]. Chinese Physics Letters, 2007, 24(8): 2308-2311. doi: 10.1088/0256-307X/24/8/042
    [30]
    Wang Lifeng, Ye Wenhua, He Xiantu. Density gradient effects in weakly nonlinear ablative Rayleigh-Taylor instability[J]. Physics of Plasmas, 2012, 19: 012706. doi: 10.1063/1.3677821
    [31]
    王立锋, 叶文华, 陈竹, 等. 激光聚变内爆流体不稳定性基础问题研究进展[J]. 强激光与粒子束, 2021, 33:012001. (Wang Lifeng, Ye Wenhua, Chen Zhu, et al. Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 2021, 33: 012001 doi: 10.11884/HPLPB202132.200173

    Wang Lifeng, Ye Wenhua, Chen Zhu, et al. Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 2021, 33: 012001 doi: 10.11884/HPLPB202132.200173
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (604) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return