Volume 35 Issue 4
Mar.  2023
Turn off MathJax
Article Contents
Chen Yibo, Shen Hao, Duan Jiazhu, et al. Development of optically addressed liquid crystal light valve for high power density beam control[J]. High Power Laser and Particle Beams, 2023, 35: 041012. doi: 10.11884/HPLPB202335.220203
Citation: Chen Yibo, Shen Hao, Duan Jiazhu, et al. Development of optically addressed liquid crystal light valve for high power density beam control[J]. High Power Laser and Particle Beams, 2023, 35: 041012. doi: 10.11884/HPLPB202335.220203

Development of optically addressed liquid crystal light valve for high power density beam control

doi: 10.11884/HPLPB202335.220203
  • Received Date: 2022-06-17
  • Accepted Date: 2023-01-03
  • Rev Recd Date: 2022-10-30
  • Available Online: 2023-01-14
  • Publish Date: 2023-03-30
  • As a beam control device, optically addressed liquid crystal light valve is easy to produce thermal effect due to absorption under the action of high-power density laser, resulting in damage to photoconductive materials, conductive films and liquid crystals. At the same time, thermal effect will also affect the uniformity of the device, reduce the extinction performance of the device. These factors limit the application of the device in laser processing, high power density laser shaping and other fields. To solve the application limitation of optically addressed liquid crystal light valve in the field of high power density beam control, an optically addressed liquid crystal light valve for high power density laser system is developed. The on/off ratio of the light valve is not less than 140∶1. It can work normally in the continuous laser system higher than 2300 W/cm2. At the same time, the light valve can work normally in the femtosecond pulse laser system with high repetition frequency gigawatt power density. Under the action of the maximum power density laser of the system, the light valve has no obvious temperature change. The maximum average power density of the pulse system exceeds 300 W/cm2.
  • loading
  • [1]
    Li Shiqiang, Xu Xuewu, Veetil R M, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 2019, 364(6445): 1087-1090. doi: 10.1126/science.aaw6747
    [2]
    Zola R S, Bisoyi H K, Wang Hao, et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings[J]. Advanced Materials, 2019, 31: 1806172. doi: 10.1002/adma.201806172
    [3]
    Komar A, Paniagua-Domínguez R, Miroshnichenko A, et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1742-1748. doi: 10.1021/acsphotonics.7b01343
    [4]
    Brignon A, Bongrand I, Loiseaux B, et al. Signal-beam amplification by two-wave mixing in a liquid-crystal light valve[J]. Optics Letters, 1997, 22(24): 1855-1857. doi: 10.1364/OL.22.001855
    [5]
    Sanner N, Huot N, Audouard E, et al. Programmable focal spot shaping of amplified femtosecond laser pulses[J]. Optics Letters, 2005, 30(12): 1479-1481. doi: 10.1364/OL.30.001479
    [6]
    Huang Dajie, Fan Wei, Li Xuechun, et al. Beam shaping for 1 053-nm coherent light using optically addressed liquid crystal light valve[J]. Chinese Optics Letters, 2012, 10: S21406. doi: 10.3788/col201210.s21406
    [7]
    Heebner J, Borden M, Miller P, et al. A programmable beam shaping system for tailoring the profile of high fluence laser beams[C]//Proceedings of SPIE 7842, Laser-Induced Damage in Optical Materials: 2010. 2010.
    [8]
    Bortolozzo U, Residori S, Petrosyan A, et al. Pattern formation and direct measurement of the spatial resolution in a photorefractive liquid crystal light valve[J]. Optics Communications, 2006, 263(2): 317-321. doi: 10.1016/j.optcom.2006.01.038
    [9]
    Bortolozzo U, Residori S, Huignard J P. Self-pumped phase conjugation in a liquid crystal light valve with a tilted feedback mirror[J]. Optics Letters, 2007, 32(7): 829-831. doi: 10.1364/OL.32.000829
    [10]
    Bortolozzo U, Montina A, Arecchi F T, et al. Spatiotemporal pulses in a liquid crystal optical oscillator[J]. Physical Review Letters, 2007, 99: 023901. doi: 10.1103/PhysRevLett.99.023901
    [11]
    Bortolozzo U, Residori S, Huignard J P. Adaptive holography in liquid crystal light-valves[J]. Materials, 2012, 5(9): 1546-1559. doi: 10.3390/ma5091546
    [12]
    Peigné A, Bortolozzo U, Residori S, et al. Adaptive holographic interferometer at 1.55 μm based on optically addressed spatial light modulator[J]. Optics Letters, 2015, 40(23): 5482-5485. doi: 10.1364/OL.40.005482
    [13]
    Peigné A, Bortolozzo U, Residori S, et al. Adaptive interferometry for high-sensitivity optical fiber sensing[J]. Journal of Lightwave Technology, 2016, 34(19): 4603-4609. doi: 10.1109/JLT.2016.2552495
    [14]
    Bortolozzo U, Residori S, Huignard J P P. Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes[J]. Laser & Photonics Reviews, 2010, 4(4): 483-498.
    [15]
    Lenzini F, Residori S, Arecchi F T, et al. Optical vortex interaction and generation via nonlinear wave mixing[J]. Physical Review A, 2011, 84: 061801. doi: 10.1103/PhysRevA.84.061801
    [16]
    Bortolozzo U, Residori S, Howell J C. Precision Doppler measurements with steep dispersion[J]. Optics Letters, 2013, 38(16): 3107-3110. doi: 10.1364/OL.38.003107
    [17]
    Yoo J H, Menor M G, Adams J J, et al. Laser damage mechanisms in conductive widegap semiconductor films[J]. Optics Express, 2016, 24(16): 17616-17634. doi: 10.1364/OE.24.017616
    [18]
    Yoo J H, Matthews M, Ramsey P, et al. Thermally ruggedized ITO transparent electrode films for high power optoelectronics[J]. Optics Express, 2017, 25(21): 25533-25545. doi: 10.1364/OE.25.025533
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views (905) PDF downloads(126) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return