Volume 36 Issue 5
Apr.  2024
Turn off MathJax
Article Contents
Liu Yi, Liao Hongbin, Cheng Jin, et al. Method for predicting plasma channel length for rock breaking by pulsed discharge[J]. High Power Laser and Particle Beams, 2024, 36: 055021. doi: 10.11884/HPLPB202436.230432
Citation: Liu Yi, Liao Hongbin, Cheng Jin, et al. Method for predicting plasma channel length for rock breaking by pulsed discharge[J]. High Power Laser and Particle Beams, 2024, 36: 055021. doi: 10.11884/HPLPB202436.230432

Method for predicting plasma channel length for rock breaking by pulsed discharge

doi: 10.11884/HPLPB202436.230432
  • Received Date: 2023-12-07
  • Accepted Date: 2024-02-23
  • Rev Recd Date: 2024-02-19
  • Available Online: 2024-02-29
  • Publish Date: 2024-05-15
  • Aiming at the difficulty of predicting the length of rock-breaking arc plasma channel by high voltage pulse discharge, a comprehensive test platform for rock-breaking arc plasma channel by high voltage pulse discharge was constructed. The development characteristics and typical current and voltage parameters of arc plasma channel under granite-tap water combined medium were measured, and the broken region formed on the rock surface under different electrode spacing and pulse discharge times was extracted. Based on the energy balance equation, the impedance model of the arc plasma channel in rock is established. The approximate optimal solution of the impedance model parameters is obtained by iterative optimization algorithm. The relative error between the calculated results and the experimental results is less than 7%. Based on the optimized parameters, the length of plasma channel is predicted by the measured current and voltage data. The absolute error between the plasma channel length predicted by the model and the measured value is in the order of mm, and the relative error is less than 10%, which provides theoretical support for the matching design of power-electrode load in the high-voltage pulse discharge rock breaking system.
  • loading
  • [1]
    张瑞强, 刘少军, 胡琼. 利用脉冲功率技术开采海底富钴结壳的试验研究[J]. 强激光与粒子束, 2017, 29:065008 doi: 10.11884/HPLPB201729.170048

    Zhang Ruiqiang, Liu Shaojun, Hu Qiong. Experimental investigation of exploring marine co-rich crust using pulse power techniques[J]. High Power Laser and Particle Beams, 2017, 29: 065008 doi: 10.11884/HPLPB201729.170048
    [2]
    吴敏干, 刘毅, 林福昌, 等. 液电脉冲激波特性分析[J]. 强激光与粒子束, 2020, 32:045002

    Wu Min’gan, Liu Yi, Lin Fuchang, et al. Characteristics analysis of electrohydraulic shockwave[J]. High Power Laser and Particle Beams, 2020, 32: 045002
    [3]
    付荣耀, 周健, 孙鹞鸿, 等. 无围压下高电压脉冲放电在岩石压裂中的应用[J]. 高电压技术, 2015, 41(12):4055-4059

    Fu Rongyao, Zhou Jian, Sun Yaohong, et al. Application of high voltage pulse discharge in rock fracturing without confining pressure[J]. High Voltage Engineering, 2015, 41(12): 4055-4059
    [4]
    Wang Xiaodong, Li Ningjing, Du Jiaxu, et al. Concrete crushing based on the high-voltage pulse discharge technology[J]. Journal of Building Engineering, 2021, 41: 102366. doi: 10.1016/j.jobe.2021.102366
    [5]
    Huang Shijie, Liu Yi, Zhao Yong, et al. Stress wave analysis of high-voltage pulse discharge rock fragmentation based on plasma channel impedance model[J]. Plasma Science and Technology, 2023, 25: 065502. doi: 10.1088/2058-6272/acb136
    [6]
    Zhao Yong, Liu Yi, Xiong Liangli, et al. Dynamic damage characteristics of rock under multiple loads during high-voltage pulse fragmentation[J]. Journal of Applied Physics, 2022, 132: 104901. doi: 10.1063/5.0100904
    [7]
    Walsh S D C, Vogler D. Simulating electropulse fracture of granitic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 128: 104238. doi: 10.1016/j.ijrmms.2020.104238
    [8]
    Biela J, Marxgut C, Bortis D, et al. Solid state modulator for plasma channel drilling[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 1093-1099. doi: 10.1109/TDEI.2009.5211860
    [9]
    Lisitsyn I V, Inoue H, Nishizawa I, et al. Breakdown and destruction of heterogeneous solid dielectrics by high voltage pulses[J]. Journal of Applied Physics, 1998, 84(11): 6262-6267. doi: 10.1063/1.368946
    [10]
    Ushakov V Y, Vajov V F, Zinoviev N T. Electro-discharge technology for drilling wells and concrete destruction[M]. Cham: Springer, 2019.
    [11]
    Ezzat M, Vogler D, Saar M O, et al. Simulating plasma formation in pores under short electric pulses for Plasma Pulse Geo Drilling (PPGD)[J]. Energies, 2021, 14: 4717. doi: 10.3390/en14164717
    [12]
    杨扬, 李昌平, 丁华锋. 高压脉冲破岩放电回路建模及参数辨识[J]. 机械工程学报, 2022, 58(15):243-251 doi: 10.3901/JME.2022.15.243

    Yang Yang, Li Changping, Ding Huafeng. Modeling and parameter identification of high voltage pulse rock-breaking discharge circuit[J]. Journal of Mechanical Engineering, 2022, 58(15): 243-251 doi: 10.3901/JME.2022.15.243
    [13]
    Zhu Xiaohua, Chen Mengqiu, Liu Weiji, et al. The fragmentation mechanism of heterogeneous granite by high-voltage electrical pulses[J]. Rock Mechanics and Rock Engineering, 2022, 55(7): 4351-4372. doi: 10.1007/s00603-022-02874-z
    [14]
    Braginskii S I. Theory of the development of a spark channel[J]. Soviet Physics JETP, 1958, 34(6): 1068-1074.
    [15]
    Li Changping, Duan Longchen, Tan Songcheng, et al. An electro breakdown damage model for granite and simulation of deep drilling by high-voltage electropulse boring[J]. Shock and Vibration, 2019, 2019: 7149680.
    [16]
    徐尤来, 刘毅, 黄仕杰, 等. 高电压脉冲放电破岩系统建模分析[J]. 真空科学与技术学报, 2023, 43(4):298-304

    Xu Youlai, Liu Yi, Huang Shijie, et al. Simulation of high voltage pulse rock breaking system[J]. Chinese Journal of Vacuum Science and Technology, 2023, 43(4): 298-304
    [17]
    黄仕杰, 刘毅, 林福昌, 等. 高压脉冲放电破岩电弧阻抗特性分析[J]. 电工技术学报, 2022, 37(19):4978-4988

    Huang Shijie, Liu Yi, Lin Fuchang, et al. Analysis of arc impedance characteristics in high-voltage electric pulse discharge rock destruction[J]. Transactions of China Electrotechnical Society, 2022, 37(19): 4978-4988
    [18]
    Kratel A W H. Pulsed power discharges in water[D]. Pasadena: California Institute of Technology, 1996.
    [19]
    李寿哲. 大气压微波等离子体炬的开发和发射光谱诊断[J]. 高电压技术, 2019, 45(11):3730-3735

    Li Shouzhe. Development and optical emission diagnosis of atmospheric-pressure microwave plasma torch[J]. High Voltage Engineering, 2019, 45(11): 3730-3735
    [20]
    葛继科, 邱玉辉, 吴春明, 等. 遗传算法研究综述[J]. 计算机应用研究, 2008, 25(10):2911-2916

    Ge Jike, Qiu Yuhui, Wu Chunming, et al. Summary of genetic algorithms research[J]. Application Research of Computers, 2008, 25(10): 2911-2916
    [21]
    Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
    [22]
    Verma S, Pant M, Snasel V. A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems[J]. IEEE Access, 2021, 9: 57757-57791. doi: 10.1109/ACCESS.2021.3070634
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article views (83) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return