Volume 32 Issue 1
Dec.  2019
Turn off MathJax
Article Contents
Li Ping, Zhang Jun, Wei Xiaofeng. Plasma optics technologies: State of the art and future perspective[J]. High Power Laser and Particle Beams, 2020, 32: 011008. doi: 10.11884/hplpb202032.190466
Citation: Li Ping, Zhang Jun, Wei Xiaofeng. Plasma optics technologies: State of the art and future perspective[J]. High Power Laser and Particle Beams, 2020, 32: 011008. doi: 10.11884/hplpb202032.190466

Plasma optics technologies: State of the art and future perspective

doi: 10.11884/hplpb202032.190466
  • Received Date: 2019-11-16
  • Rev Recd Date: 2019-12-25
  • Publish Date: 2019-12-26
  • Plasma optics is an important way for the development of high power laser technology because plasma medium has high energy storage density, no laser-induced damage threshold and rich optical properties. The research status of plasma optics in recent years is introduced, and the development trend of plasma optics in the future is discussed.
  • loading
  • [1]
    Basov N G, Krohkin O H. The conditions of plasma heating by optical generation of radiation[C]//Proceedings of the 3rd International Congress on Quantum Electronics. New York: Columbia University Press, 1964: 1373.
    [2]
    王淦昌. 利用大能量大功率的光激射器产生中子的建议[J]. 中国激光, 1987, 14(11):641-645. (Wang Ganchang. Suggestion of neutron generation with powerful lasers[J]. Chinese Journal of Lasers, 1987, 14(11): 641-645 doi: 10.3321/j.issn:0258-7025.1987.11.001
    [3]
    Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications[J]. Nature, 1972, 239(5368): 139-142. doi: 10.1038/239139a0
    [4]
    邵建达, 戴亚平, 许乔. 惯性约束聚变激光驱动装置用光学元器件的研究进展[J]. 光学 精密工程, 2016, 24(12):2889-2895. (Shao Jianda, Dai Yaping, Xu Qiao. Progress on optical components for ICF laser facility[J]. Optics and Precision Engineering, 2016, 24(12): 2889-2895 doi: 10.3788/OPE.20162412.2889
    [5]
    魏晓峰, 郑万国, 张小民. 中国高功率固体激光技术发展中的两次突破[J]. 物理, 2018, 47(2):73-83. (Wei Xiaofeng, Zheng Wanguo, Zhang Xiaomin. Two breakthroughs in the development of high power solid-state laser technology in China[J]. Physics, 2018, 47(2): 73-83 doi: 10.7693/wl20180202
    [6]
    郑万国, 魏晓峰, 朱启华, 等. 神光-Ⅲ主机装置成功实现60 TW/180 kJ三倍频激光输出[J]. 强激光与粒子束, 2016, 28:019901. (Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. SG-Ⅲ laser facility has successfully achieved 60 TW/180 kJ ultraviolet laser (351 nm) output[J]. High Power Laser and Particle Beams, 2016, 28: 019901
    [7]
    Maywar D N, Kelly J H, Waxer L J, et al. OMEGA EP high-energy petawatt laser: progress and prospects[J]. J Phys: Conf Ser, 2008, 112: 032007. doi: 10.1088/1742-6596/112/3/032007
    [8]
    André M L. The French Megajoule Laser Project (LMJ)[J]. Fusion Engineering and Design, 1999, 44(1/4): 43-49.
    [9]
    Moses, E I. The National Ignition Facility (NIF): A path to fusion energy[J]. Energy Conversion and Management, 2008, 49: 1795-1802. doi: 10.1016/j.enconman.2007.10.029
    [10]
    Daniel C. Ignition facility misses goal, ponders new course[J]. Science, 2012, 337(9): 1444.
    [11]
    Hurricane O A, Kline J L, Meezan N, et al. Deep dive topic: Approach to ignition[R]. LLNL-TR-674445, 2015.
    [12]
    Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 2016, 69: 146-249. doi: 10.13182/FST15-139
    [13]
    马腾才. 等离子体物理原理[M]. 合肥: 中国科学技术大学出版社, 1988.

    Ma Tengcai. Principles of plasma physics[M]. Hefei: China University of Science and Technology Press, 1988
    [14]
    Maier S A. Plasmonics: Fundamentals and applications[M]. Berlin: Springer, 2017.
    [15]
    Sakai O, Tachibana K. Plasmas as metamaterials: a review[J]. Plasma Sources Sci Technol, 2012, 21: 013001. doi: 10.1088/0963-0252/21/1/013001
    [16]
    Boley C D, Rhodes M A. Modeling of plasma behavior in a plasma electrode Pockels cell[J]. IEEE Trans Plasma Science, 1999, 27(3): 713-726. doi: 10.1109/27.774676
    [17]
    Backus S, Kapteyn H C, Murname M M, et al. Prepulse suppression for high-energy ultrashort pulses using self-induced plasma shuttering from a fluid target[J]. Opt Express, 1993, 18(2): 134-136.
    [18]
    Ehrlich Y, Cohen C, Zigler A, et al. Guiding of high intensity laser pulses in straight and curved plasma channel experiments[J]. Phys Rev Lett, 1996, 77(20): 4186-4189. doi: 10.1103/PhysRevLett.77.4186
    [19]
    Kuo C C, Pai C H, Lin M W, et al. Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide[J]. Phys Rev Lett, 2007, 98: 033901. doi: 10.1103/PhysRevLett.98.033901
    [20]
    Litos M, Adli E, An W, et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator[J]. Nature, 2014, 515(7525): 92-95. doi: 10.1038/nature13882
    [21]
    於陆勒, 盛政明, 张杰. 均匀等离子体光栅的色散特性研究[J]. 物理学报, 2008, 57(10):6457-6464. (Yu Lule, Sheng Zhengming, Zhang Jie. Investigation on the dispersion characteristics of a uniform plasma grating[J]. Acta Physica Sinica, 2008, 57(10): 6457-6464 doi: 10.3321/j.issn:1000-3290.2008.10.062
    [22]
    陈伟, 叶艾, 任竞骁. 高功率激光器电光调Q技术研究[J]. 光学与光电技术, 2007, 5(1):27-300. (Chen Wei, Ye Ai, Ren Jingxiao. Electro-optic Q-switched technology of high power and high efficiency laser[J]. Optics & Optoelectronic Technology, 2007, 5(1): 27-300 doi: 10.3969/j.issn.1672-3392.2007.01.007
    [23]
    王小发, 樊仲维, 余锦, 等. 高能量高效率钕玻璃再生放大器[J]. 中国激光, 2012, 39:0802002. (Wang Xiaofa, Fan Zhongwei, Yu Jin, et al. High energy and high efficiency Nd glass regenerative amplifier[J]. Chinese Journal of Lasers, 2012, 39: 0802002 doi: 10.3788/CJL201239.0802002
    [24]
    范滇元, 余文炎. 高功率多程放大器[J]. 中国激光, 1980, 7(9):1-6. (Fan Dianyuan, Yu Wenyan. High power multi-pass amplifier[J]. Chinese Journal of Lasers, 1980, 7(9): 1-6
    [25]
    张雄军, 郑建刚, 郑奎兴, 等. 用于多程放大系统光束反转器的等离子体电极电光开关[J]. 强激光与粒子束, 2003, 15(2):150-154. (Zhang Xiongjun, Zheng Jiangang, Zheng Kuixing, et al. PEPC electro-optical switch used in beam reverser of multipass amplifier[J]. High Power Laser and Particle Beams, 2003, 15(2): 150-154
    [26]
    Zhang Jun, Wu Dengsheng, Zheng Jiangang, et al. Single-pulse driven, large-aperture, 2×1 array plasma-electrodes optical switch for SG-II upgrading facility[C]//Proc of SPIE. 2014: 929425.
    [27]
    Zhang Xiongjun, Wu Dengsheng, Zhang Jun, et al. One-pulse driven plasma Pockels cell with DKDP crystal for repetition-rate application[J]. Opt Express, 2009, 17: 17164. doi: 10.1364/OE.17.017164
    [28]
    Zhang Jun, Zhang Xiongjun, Wu Dengsheng, et al. A reflecting Pockels cell with aperture scalable for high average power multipass amplifier systems[J]. Opt Express, 2010, 18: A185. doi: 10.1364/OE.18.00A185
    [29]
    Zhang Jun, Zhang Xiongjun, Zheng Jiangang, et al. Aperture scalable, high average power capable, hybrid-electrode Pockels cell[J]. Opt Lett, 2017, 42(9): 1676. doi: 10.1364/OL.42.001676
    [30]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Opt Commun, 1985, 56: 219. doi: 10.1016/0030-4018(85)90120-8
    [31]
    Gomez C H, Blake S P, Chekhlov O, et al. The Vulcan 10 PW project[J]. J of Physics: Conf Series, 2010, 244: 032006. doi: 10.1088/1742-6596/244/3/032006
    [32]
    Malkin V M, Shvets G, Fisch N J. Fast compression of laser beams to highly overcritical powers[J]. Phys Rev Lett, 1999, 82(22): 4448-4451. doi: 10.1103/PhysRevLett.82.4448
    [33]
    Shvets G, Fisch N J, Pukhov A, et al. Super radiant amplification of an ultrashort laser pulse in a plasma by a counter propagating pump[J]. Phys Rev Lett, 1998, 81(22): 4879-4882. doi: 10.1103/PhysRevLett.81.4879
    [34]
    Ping Y, Cheng W, Suckewer S, et al. Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma[J]. Phys Rev Lett, 2004, 92: 175007. doi: 10.1103/PhysRevLett.92.175007
    [35]
    Pai C H, Lin M W, Ha L C, et al. Backward Raman amplification in a plasma waveguide[J]. Phys Rev Lett, 2008, 101: 065005. doi: 10.1103/PhysRevLett.101.065005
    [36]
    Cheng W, Avitzour Y, Ping Y, et al. Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses[J]. Phys Rev Lett, 2005, 94: 045003. doi: 10.1103/PhysRevLett.94.045003
    [37]
    Kirkwood R K, Ping Y, Wilks S C, et al. Observation of amplification of light by Langmuir waves and its saturation on the electron kinetic timescale[J]. J Plasma Phys, 2011, 77: 521-528. doi: 10.1017/S0022377810000681
    [38]
    Weber S, Riconda C, Lancia L, et al. Amplification of ultrashort laser pulses by Brillouin backscattering in plasmas[J]. Phys Rev Lett, 2013, 111: 055004. doi: 10.1103/PhysRevLett.111.055004
    [39]
    Edwards M R, Jia Q, Mikhailova J M, et al. Short-pulse amplification by strongly coupled stimulated Brillouin scattering[J]. Phys Plasmas, 2016, 23: 083122. doi: 10.1063/1.4961429
    [40]
    Zuo Y L, Wei X F, Zhou K N, et al. Enhanced laser-induced plasma channels in air[J]. Chinese Physics B, 2016, 25(3): 256-261.
    [41]
    Wu Z H, Wei X F, Zuo Y L, et al. Backward Raman amplification in plasmas with chirped wideband pump and seed pulses[J]. Chinese Physics B, 2015, 24(1): 298-302.
    [42]
    Lehmann G, Spatschek K-H. Transient plasma photonic crystals for high-power lasers[J]. Phys Rev Lett, 2016, 116: 225002. doi: 10.1103/PhysRevLett.116.225002
    [43]
    Turnbull D P, Michel P, Ralph J, et al. Multibeam seeded Brillouin sidescatter in inertial confinement fusion experiments[J]. Phys Rev Lett, 2015, 114: 125001. doi: 10.1103/PhysRevLett.114.125001
    [44]
    Kirkwood R K, Turnbull D P, Chapman T, et al. Plasma-based beam combiner for very high fluence and energy[J]. Nature Physics, 2018, 14: 80-84. doi: 10.1038/nphys4271
    [45]
    Gold D M. Direct measurement of prepulse suppression by use of a plasma shutter[J]. Opt Lett, 1994, 19(24): 2006-2008.
    [46]
    Price D F, More R M, Walling R S, et al. Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV[J]. Phys Rev Lett, 1995, 75(2): 252-255. doi: 10.1103/PhysRevLett.75.252
    [47]
    Ziener Ch, Foster P S, Divall E J, et al. Specular reflectivity of plasma mirrors as a function of intensity, pulse duration, and angle of incidence[J]. J of Appl Phys, 2003, 93(1): 768-770. doi: 10.1063/1.1525062
    [48]
    Bulanov S S, Macchi A, Maksimchuk A, et al. Electromagnetic pulse reflection at self-generated plasma mirrors: Laser pulse shaping and high order harmonic generation[J]. Phys Plasma, 2007, 14: 093105. doi: 10.1063/1.2776906
    [49]
    Doumy G, Quéré F, Gobert O, et al. Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses[J]. Phys Rev E, 2004, 69: 026402. doi: 10.1103/PhysRevE.69.026402
    [50]
    Wittmann T, Geindre J P, Audebert P, et al. Towards ultrahigh-contrast ultraintense laser pulses—Complete characterization of a double plasma-mirror pulse cleaner[J]. Rev Sci Instrum, 2006, 77: 083019.
    [51]
    Thaury C, Quere F, Geindre J P, et al. Plasma mirrors for ultrahigh-intensity optics[J]. Nature Physics, 2007, 3: 424-429. doi: 10.1038/nphys595
    [52]
    Gibbon P. Plasma physics: Cleaner petawatts with plasma optics[J]. Nature Physics, 2007, 3: 369-370. doi: 10.1038/nphys639
    [53]
    Nakatsutsumi M, Kon A, Buffechoux S, et al. Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity[J]. Opt Lett, 2010, 35(13): 2314-2316. doi: 10.1364/OL.35.002314
    [54]
    李平, 王伟, 赵润昌, 等. 基于焦斑空间频率全域优化的偏振匀滑设计[J]. 物理学报, 2014, 63:215202. (Li Ping, Wang Wei, Zhao Runchang, et al. Polarization smoothing design for improving the whole spatial frequency at focal spot[J]. Acta Physica Sinica, 2014, 63: 215202 doi: 10.7498/aps.63.215202
    [55]
    Liu Z J, Zheng C Y, Cao L H, et al. Decreasing Brillouin and Raman scattering by alternating-polarization light[J]. Phys Plasmas, 2017, 24(3): 032701. doi: 10.1063/1.4977910
    [56]
    Arita Y, Mazilu M, Dholakia K. Laser-induced rotation and cooling of a trapped microgyroscope in vacuum[J]. Nat Commun, 2013, 4: 2374. doi: 10.1038/ncomms3374
    [57]
    Zhang L, Shen B, Zhang X, et al. Deflection of a reflected intense vortex laser beam[J]. Phys Rev Lett, 2016, 117: 113904. doi: 10.1103/PhysRevLett.117.113904
    [58]
    Michel P, Rozmus W, Williams E A, et al. Saturation of multi-laser beams laser-plasma instabilities from stochastic ion heating[J]. Phys Plasmas, 2013, 20: 056308. doi: 10.1063/1.4802828
    [59]
    Michel P, Divol L, Turnbul l D, et al. , Dynamic control of the polarization of intense laser beams via optical wave mixing in plasma[J]. Phys Rev Lett, 2014, 113: 205001. doi: 10.1103/PhysRevLett.113.205001
    [60]
    Turnbull D, Michel P, Chapman T, et al. High power dynamic polarization control using plasma photonics[J]. Phys Rev Lett, 2016, 116: 205001. doi: 10.1103/PhysRevLett.116.205001
    [61]
    Turnbull D, Goyon C, Kemp G E, et al. Refractive index seen by a probe beam interacting with a laser-plasma system[J]. Phys Rev Lett, 2017, 118: 015001. doi: 10.1103/PhysRevLett.118.015001
    [62]
    Weng Suming, Zhao Qian, Sheng Zhengming, et al. Extreme case of Faraday effect: magnetic splitting of ultrashort laser pulses in plasmas[J]. Optica, 2017, 4(9): 1086. doi: 10.1364/OPTICA.4.001086
    [63]
    Liu Ming, Zhang Xiang. Nano-optics: plasmon-boosted magneto-optics[J]. Nat Photonics, 2013, 7: 429-430. doi: 10.1038/nphoton.2013.134
    [64]
    Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. J Appl Phys, 1989, 66(8): 3456-3462. doi: 10.1063/1.344101
    [65]
    钱列加. 宽频带激光的啁啾匹配型三次谐波转换[J]. 光学学报, 1995, 15(6):662-664. (Qian Liejia. Chirp matched third harmonic conversion for broad-band lasers[J]. Acta Optica Sinica, 1995, 15(6): 662-664 doi: 10.3321/j.issn:0253-2239.1995.06.005
    [66]
    Loiseau P, Morice O, Teychenné D, et al. Laser-beam smoothing induced by stimulated Brillouin scattering in an inhomogeneous plasma[J]. Phys Rev Lett, 2006, 97: 205001. doi: 10.1103/PhysRevLett.97.205001
    [67]
    Maximov A V, Ourdev I G, Pesme D, et al. Plasma induced smoothing of a spatially incoherent laser beam and reduction of backward stimulated Brillouin scattering[J]. Phys Plasma, 2001, 8(4): 1319. doi: 10.1063/1.1352056
    [68]
    Grech M, Riazuelo G, Pesme D, et al. Coherent forward stimulated-Brillouin scattering of a spatially incoherent laser beam in a plasma and its effect on beam spray[J]. Phys Rev Lett, 2009, 102: 155001. doi: 10.1103/PhysRevLett.102.155001
    [69]
    Fuchs J, Labaune C, Bandulet H, et al. Reduction of the coherence time of an intense laser pulse propagating through a plasma[J]. Phys Rev Lett, 2002, 88: 195003. doi: 10.1103/PhysRevLett.88.195003
    [70]
    Yahia V, Masson-Laborde P E, Depierreux S, et al. Reduction of stimulated Brillouin backscattering with plasma beam smoothing[J]. Phys Plasma, 2015, 22: 042707. doi: 10.1063/1.4918942
    [71]
    Grech M, Tikhonchuk V T, Riazuelo G, et al. Plasma induced laser beam smoothing below the filamentation threshold[J]. Phys Plasma, 2006, 13: 093104. doi: 10.1063/1.2337791
    [72]
    Yu L L, Zhao Y, Qian L J, et al. Plasma optical modulators for intense lasers[J]. Nat Commun, 2016(6): 11893.
    [73]
    Leblanc A, Denoeud A, Chopineau L, et al. Plasma holograms for ultrahigh-intensity optics[J]. Nature Phys, 2017, 13: 440-443. doi: 10.1038/nphys4007
    [74]
    Monchocé S, Kahaly S, Leblanc A, et al. Optically controlled solid-density transient plasma gratings[J]. Phys Rev Lett, 2014, 112: 145008. doi: 10.1103/PhysRevLett.112.145008
    [75]
    Peng H, Marquès J R, Lancia L. et al, Plasma optics in the context of high intensity lasers[J]. Matter and Radiation at Extremes, 2019, 4: 065401. doi: 10.1063/1.5091550
    [76]
    Qu K, Jia Q, Fisch N J. Plasma Q-plate for generation and manipulation of intense optical vortices[J]. Phys Rev E, 2017, 96(5): 053207. doi: 10.1103/PhysRevE.96.053207
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article views (3539) PDF downloads(276) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return