2022年 34卷 第7期
磁场调控型离子源在离子源等离子体扩散空间中引入轴向强脉冲磁场,磁场起两方面的作用,一是形成潘宁放电效应,使原子、气体分子碰撞电离效率增加;二是在脉冲强磁场的作用下,强轴向磁场将质量较轻的离子约束在轴线上,对质量较重的金属离子约束能力较弱,导致其在等离子体膨胀引出通道中碰壁损失,能够提升引出轻离子的比例。开展了磁场调控的离子源放电结构、强脉冲螺线管磁场以及引出束流光学结构的设计;测量分析了引出离子流强和离子打靶束斑形貌。研究结果表明,强轴向磁场通过等离子体对混合离子成分的筛选作用,可有效提高引出离子流强中的轻离子成分比例。
针对回旋加速器的束流动力学设计,基于Geant4模拟研究,提供一种可行的数值模拟方法。通过电磁场仿真软件Opera建立相应的电磁场数据导入到Geant4中进行插值计算,利用Geant4自带的电磁场微分方程与微分方程求解器计算粒子的平衡轨道,振荡频率以及加速轨道。其结果表明:对于横向运动而言,Geant4的计算结果与传统数值方法计算结果趋于一致;对于轴向运动而言,由于磁场插值方法的差异性,二者有一定的区别,对于在加速过程中的非平衡粒子,其能量变化围绕平衡粒子振荡。对于束损,通过限制粒子的运动时间,轴向位移加快计算效率,加入电极碰撞的判定使模拟更趋近实际情况。
采用感应同步加速原理,能在MHz重复频率下连续运行的双极性脉冲感应加速单元可以替代传统的射频加速单元应用于环形加速器中。针对MHz重频双极性脉冲功率源设计、感应腔负载特性等关键技术开展了实验研究,研制了一套MHz重频双极性脉冲感应加速单元。相比于日本高能加速器研究机构(KEK)研制的感应同步加速单元,该加速单元对电路结构进行了优化, 在加速脉冲具备相同顶降的前提下,将加速腔纵向尺寸缩小了5倍以上,可有效改善现有脉冲感应加速单元在加速电压调节方面的局限性,提高了功率系统的稳定性,减小了组元连续运行时的功率损耗,更加适应各类环形加速器对重频脉冲感应加速组元的应用需求。
PFN-Marx发生器可同时实现升压和脉冲形成,具有紧凑的基因。特别是近年来脉冲储能技术的发展,使得直接利用PFN-Marx发生器驱动各类负载成为现实,因而PFN-Marx发生器逐渐成为国内外研究热点。对国内外的高功率紧凑PFN-Marx发生器的研究进展进行了系统介绍,评述其参数和结构特点。通过总结,从时间发展历程上看,PFN-Marx发生器采用高储能密度器件,装置的储能密度水平在不断地提高,尺寸紧凑化水平也在提高;在追求紧凑化的手段上,PFN-Marx发生器的空间结构的优化设计效果优于PFN网络拓扑参数的优化设计;PFN-Marx发生器采用波形优化方法具有较明显的收益,可有效降低装置紧凑化带来级间分布参数更强耦合的负面影响。同时论文探讨了PFN-Marx发生器的发展趋势,为PFN-Marx发生器的研究和技术路线探索提供参考和依据。
基于拉格朗日描述,建立了水中金属丝电爆炸的单温磁流体动力学模型,并给出一种高阶混合有限元离散求解方法。拉氏可压缩流体方程组中,速度定义在H1连续有限元空间,内能定义在L2间断有限元空间实现物质界面的精确捕捉,存在激波的区域引入张量人工粘性抑制数值振荡。磁扩散方程仅考虑周向磁通量密度,简化为标量方程,使用H1连续有限元方法离散求解。焦耳热和洛伦兹力作为源项引入实现磁流体方程的耦合。数值算例表明:磁扩散求解器能够求解存在不同电导率的多介质磁扩散问题;拉氏流体求解器能够精确追踪物质界面,具有较好的激波分辨能力;耦合RLC电路的磁流体求解器能够复现水中金属丝电爆炸加热相变、冲击波的产生与传播、放电模式转变等物理过程。
气体开关电弧的热侵蚀作用是电极损耗的主要成因。石墨电极在电弧作用下发生蒸发并在多次放电后有明显的质量损耗,改变了开关内的气体环境和电极间距,导致开关动作可靠性降低。为研究石墨电极在脉冲电弧冲击下的侵蚀特征,基于开关电弧瞬态扩散特征和石墨材料参数,在弧根区域建立了电弧-电极能量耦合模型,得到了等离子体-固体区域的传热特性。考虑石墨电极的相变特征,计算瞬态热作用下石墨电极的加热范围以及临界相变点,研究瞬态电弧热冲击作用下的石墨电极相变机制。研究结果表明,电弧-电极界面热流主要集中在电弧接触面中心,电弧沉积的能量密度最高可达109 W/m2,石墨在电流上升初期基本处于加热状态,在能量积聚作用下,石墨转变为升华状态,传热强度随半径急剧衰减,蒸发区域略小于电弧半径。通过实验记录了5种开关工况下石墨电极烧蚀形貌和质量损失情况,结果表明,电极质量损失与电弧沉积在电极表面的能量线性相关,近似为0.015 mg/J。研究了电弧关键参数对电极质量损失速率的影响,为延缓电极损耗提供数据支撑。
百kV/cm高场强纳秒脉冲条件下,采用J. C. Martin经验公式估算SF6气体击穿场强时,估算值与实验结果差异显著。为了进一步指导高场强脉冲气体开关设计,为开关工作状态调节提供依据,借鉴经典击穿场强经验公式形式建立了百kV/cm场强下SF6气体开关纳秒脉冲击穿场强和时延与实验参数之间的关系,基于实验数据拟合形成了修正系数的击穿场强和时延经验公式。研究表明,百kV/cm场强和纳秒脉冲条件下脉冲电压斜率对开关击穿特性有重要影响,击穿场强与击穿时延相互关联。百ns至μs脉冲与几十ns脉冲气体放电机理的区别引起放电过程中击穿时延组成发生变化,导致了经典击穿场强经验公式估算值与实验结果的显著差异。修正系数的击穿经验公式可为电磁脉冲模拟器输出开关提供更为精确的工程设计依据。
在诸如粒子加速器等应用中,要求高压脉冲的电压、电流顶降尽可能低。减小顶降的常用方法是增加储能电容器的容量,但代价是系统的能效较低、体积较大、功率较高。另一种方法是插入一些特殊级来补偿电压顶降。在固态Marx发生器中,当谐振电感和补偿开关串联起来与普通级中的主电容并联时,就得到了补偿级。本文在16级单极性固态Marx发生器中加入了四个基于谐振电路的补偿级,以补偿不同负载、不同脉宽下的电压顶降。在放电过程中,将正弦电压的近线性部分加到负载上作为补偿,实现了几乎无电压顶降的矩形脉冲。不同的补偿级数可以对电压顶降进行不同程度的补偿,补偿效果也是可调的。此外,只要关断谐振管,这些补偿级也可以作为固态Marx发生器中的普通级工作,从而加以利用。由于谐振补偿级中的电容也与Marx电路中的电容并联充电,因此不需要辅助电源充电。实验结果表明,在400 Ω和5 kΩ阻性负载上,2.5 kV和10.5 kV脉冲的电压顶降分别都能得到理想的补偿。为了获得更好的补偿效果,脉冲宽度应小于正弦电压的近线性部分的长度。
随着微波光子学的发展,新型光导微波技术利用高重频脉冲簇激光,入射到线性光导半导体器件中产生可调谐高功率电磁脉冲的方式受到广泛关注。SiC光导半导体开关(PCSS)具有高击穿场强,高饱和载流子速率,高抗辐射能力,高热传导率和高温工作稳定性等优点,是产生高重频、高功率、超短脉冲的重要固态电子器件。介绍了一种基于钒补偿半绝缘4H-SiC PCSS的MHz重复频率亚纳秒脉冲发生器。该发生器采用1 MHz,1030 nm可调谐光脉冲宽度的激光簇驱动源,4H-SiC PCSS的厚度为0.8 mm。整系统可得到最大输出电功率176 kW、最小半高宽约为365 ps的MHz重频短脉冲。
为测量LTD单路验证装置的过渡段与出口电流,设计和标定了B-dot电流探头。采用径向传输线对电流探头进行了线下标定,并开展相应验证实验证实了标定的有效性。实验表明:探头安装深度和角度误差导致的探头灵敏度偏差约为1%; 当阴阳极间距大于探头孔直径时,B-dot标定结果基本不受阴阳极间距的影响;对于本装置涉及的直径较大的同轴线,用径向线模拟标定结果是有效的。从LTD单路验证装置的实验结果可知,4个过渡段至出口的阳极电流有轻微的损失,而阴极电流逐步减小。
随脉冲功率技术向高重复频率、长寿命等方向发展,储能元件和开关元件在瞬态强场条件下的稳定性能检测十分必要。基于固态开关技术研制了一种百kV,μs时间尺度下的瞬态强场测试平台,主要由高压直流充电电源、初级单元、脉冲变压器、磁脉冲压缩网络、复位系统和测试腔体组成,实现了一体化结构,使用便利。首先,针对电容器测试条件,建立了完整的电路模型,详细设计了系统中各关键参量;然后,利用晶闸管组件作为初级单元控制开关,利用磁开关进行两级脉冲压缩,建立了实验装置;最后,给出了40 nF小批量陶瓷电容器的典型实验测试结果,测试电压50 kV,脉冲宽度1 μs,重复频率10 Hz,运行时间85 min(对应51 000个脉冲),平台稳定可靠性良好,为后续开展相关测试研究奠定了基础。
设计一种电磁加载系统应用于分离式霍普金森杆实验装置,能够克服传统气压驱动的缺点,达到精确控制入射应力波的目的。通过对电磁加载技术的调研,了解不同加载方式的电压等级,确定低压加载方式;构建系统等效RLC回路,推导回路参数与入射应力波的函数关系。结合理论计算,利用有限元软件进行耦合场仿真,仿真发现放电线圈匝数对入射应力波的幅频特性影响较大,同时为了保证电磁能量的利用效率,需要保证感应线圈的厚度大于磁渗透深度,最后根据实验要求确定电磁加载系统各参数。按照加载系统参数搭建实验平台,进行霍普金森杆冲击实验,通过对入射应力波的测量,验证了理论计算及软件仿真的正确性。
研究了一种自触发紫外预电离开关击穿时延抖动特性的影响因素,结果表明:触发间隙电容放电阶段起预电离作用时,预电离注入时刻开关电场是开关时延抖动的决定性因素,提高工作系数和采用逸出功更低的电极材料对降低开关在脉冲峰值附近击穿时的时延抖动效果有限。提出的改进方法为:减小开关均压电阻阻值,显著延长触发间隙的有效燃弧时间,消除预电离注入时间及抖动的影响。采用改进方法时可以使开关在工作电压300~800 kV、前沿100 ns、180 ns的脉冲峰值附近击穿时的时延抖动分别小于1.3 ns、2.8 ns。
建立了混合多组分等离子体高压查尔特鞘层动力学模型,数值研究了氘钛等离子体高压查尔特鞘层特性。理论与数值研究结果表明,提升D+离子比例、降低D+离子及Ti2+离子入鞘速度、降低等离子体密度等方式,均会有效增加鞘层厚度,并降低靶面场强幅值,这些方式有利于离子汇聚传输和降低靶面击穿风险。随加速电压的增加,离子引出稳定工作区域范围呈现先增加后减小的趋势。增加D+离子比例、减小D+离子及Ti2+离子入鞘速度,均会显著增加离子引出稳定工作区域范围。
以电子束在靶中的能量沉积剖面为桥梁,建立了二极管阳极靶温度和热形变模拟方法。该方法可获知二极管不同工作状态下靶的温度分布和热形变情况,为靶热-力学损伤研究提供基础数据,为二极管构型设计和寿命提升提供技术支撑。将该方法应用于“强光一号”短γ二极管,计算结果显示:当阳极离子密度大于1014 cm−3时(强箍缩),靶表面温度最高可达5500~6000 ℃,热形变量达约4.5 mm;无离子流时(弱箍缩),温度处在4500 ℃左右,形变为2.8~3.5 mm。
针对现有电容器放电开环控制产生的平顶脉冲磁场稳定度难以满足核磁共振要求这一问题,提出一种平顶磁场闭环连续微调控方案。在脉冲磁体中放置一个补偿线圈,其由蓄电池供电,采用前馈控制加反馈控制的策略,利用IGBT有源区对补偿线圈的磁场进行线性调控,补偿背景磁场的波动,形成高稳定度平顶磁场。为此,设计了IGBT工作于有源区的驱动电路,搭建了原型机进行实验,结果表明,该方法能够将磁场稳定度提升至50×10−6,验证了方案的可行性。
金属丝电爆炸法制备纳米材料因其负载可大程度的过热和爆炸产物非平衡扩散过程得到了研究人员的广泛关注,认为是制备新型功能材料的有效方法。研究了不同收集方法对电爆炸法制备钛纳米颗粒的影响,并结合电学、光学、自辐射图像和形貌分析等诊断手段分析了不同方法下产物特性的成因。结果表明,钛丝电爆炸呈现周期型放电模式,产物通道在放电结束前(约40 μs)可膨胀至约1.7 cm处,此后有尖状突刺发展(波阵面后湍流区),其速度约为55 m/s。为研究爆炸产物不同状态下纳米颗粒形成特性,使用了3种不同的产物收集方法,分别为:①在金属丝径向1.5 cm处放置硅片收集;②在腔体出口处预置滤网收集;③在金属丝一侧电极上通过定向喷涂收集。产物形貌表征结果表明,使用不同收集方法时产物特征存在明显差别,前2种方法爆炸产物先与介质混合再沉积于硅片,得到的产物分别为分散、链状的球状纳米颗粒和密集、堆叠的纳米颗粒团簇;后一种方法电爆炸产物具有较高的密度和定向速度(对硅片),硅片以金属丝为轴心远近呈现出粉末状和烧结块状两种不同形式。
开展了水中铜丝电爆炸引燃铝粉悬浮液的实验研究,将铝粉悬浮液置于有机玻璃管中,同轴心方向穿过200 μm的金属铜丝,经脉冲功率驱动后快速相变发生电爆炸为铝粉爆燃提供反应条件。通过比对不同质量球状铝粉(μm粒径)的悬浮液在相同脉冲电容器储能条件下的放电和冲击波参数,获得了电爆炸驱动铝粉放电特性和冲击波增强效应的规律。实验发现,电爆炸起爆铝粉的冲击波有两个明显的波峰,分别对应于金属丝电爆炸(一次冲击波)和由产物气体胀裂管壁产生的二次冲击波,且铝粉爆燃对二次冲击波的增强效应非常显著,在300 mg铝粉的悬浮液环境中,二次冲击波峰值达到2.77 MPa,是无铝粉添加环境中二次冲击波的2.25倍,冲击波冲量增强了约50%。对不同储能条件下200 mg铝粉的悬浮液环境中金属丝爆的冲击波进行了对比研究,发现随着驱动源储能的增加,电爆炸引发的主冲击波和二次冲击波压力均逐渐增大,600 J时分别达到了3.17和1.91 MPa,冲击波冲量也随储能增加而增加,在600 J储能条件时的冲量为41.12 Pa·s,储能条件约300 J时20.24 Pa·s冲量的2倍。
脉冲功率技术的重要发展方向是高功率密度、紧凑小型化和高稳定可靠。液体介质由于具有绝缘强度高、易流动、快恢复、散热性好等方面的特点,广泛应用于脉冲形成线型紧凑小型脉冲功率源的电容储能器件作为储能介质。主要围绕紧凑小型脉冲功率源ARC系列的技术难题,开展了关键技术、系统研发及其工程应用等方面的工作。首先,提出了基于液体介质和慢波结构的形成线,采用场均匀和绝缘配合技术,研制出紧凑小型脉冲功率源ARC-01和ARC-02,输出功率1~2 GW、脉冲宽度5~30 ns、重复频率1~100 Hz,紧凑化水平较国际先进同类装置最多提高了2倍。之后,以凑小型脉冲功率源为核心搭建液体介质击穿测试平台,针对变压器油、蓖麻油、甘油、碳酸丙烯酯等常见液体介质,开展了微秒脉冲击穿特性研究,采用统计分析方法建立了数据库,以“小成本”换取“高可靠性”;并采用超高速光学诊断方法,将击穿瞬间流注、冲击波、亚微观断裂面产生、传播、截止过程与张力理论结合,建立了液体介质击穿物理模型。最后,成功将紧凑小型脉冲功率源应用于驱动宽带/窄带微波产生、碳纤维阴极稳定性及寿命测试。
以发展轻小型高电压脉冲驱动源为出发点,提出采用爆炸驱动铁电体作为初级电源,通过电感储能与电爆炸丝断路开关进行脉冲压缩和功率放大,探索基于爆炸驱动铁电体电源的小型化高电压快脉冲产生技术。从爆炸驱动铁电体电源的全电路模型和铁电陶瓷材料特性出发,通过理论分析和仿真研究,分别对大电流模式和高电压模式的爆炸驱动铁电体电源的物理参数进行了设计,获得了铁电体电源工作模式和电路参数对产生高电压脉冲的影响规律,认为铁电体电源高电压模式更适合于与断路开关技术结合产生高电压快脉冲,并通过实验对该技术原理进行了验证。实验中铁电体电源输出电流约360 A、脉宽约3.8 μs,对17.5 nF电容器充电至75 kV,电容器放电后在电爆炸断路开关中产生峰值大于12 kA的脉冲电流,最终在X射线二极管负载上获得了电压峰值大于180 kV、前沿3 ns、脉宽30 ns、电流峰值3.4 kA的高电压快脉冲。
重频条件下电容器充电电源谐振电路由于谐振电容剩余电压的存在从而产生异常振荡,进而引发开关过流导致电源故障。针对这一问题,在分析谐振电路工作原理基础上,提出了在每个充电周期结束后,通过控制电源自身的部分开关导通,从而释放谐振电容剩余电压的解决方法,不仅可以让谐振电路趋于稳定,还避免了添加泄放电路的缺点,其控制方法也简单通用。对800 V/6 A的充电电源进行了电路仿真和实验验证,仿真和实验结果均表明,本文提出的方法可以在充电周期结束后将谐振电容上的剩余电压迅速归零,谐振电流也趋于稳定,有效抑制了谐振电路的异常振荡,从而验证了方法的有效性和实用性。
介绍了一种50 kV紧凑型自动化纳秒脉冲源,输出脉冲幅值1~50 kV连续可调,输出前沿约2 ns,脉宽约21 ns,搭配有界波导波天线,可建立满足IEC61000-2-9标准要求的电磁环境。该脉冲源采用电容直流充放电的方法实现输出电压连续可调,通过改变储能电容大小的方法实现输出脉冲脉宽可调。研制了一套远程光控的控制系统实现脉冲源的全自动化运行。该脉冲源可用于绝缘材料击穿特性试验,以及外接导波天线可产生特定的电磁环境等。通过设计和选用更高耐压的储能电容、充电绝缘子等部件,脉冲源可输出更高的电压。
采用铝合金高压线束替代铜合金高压线束可帮助电动汽车减少重量、提高续航和降低成本。针对铝与铜由于金属性质差异难以可靠连接的问题,本文提出采用电磁脉冲压接技术连接铝合金高压线束与铜合金接线端子,并研制了一套适用于两者连接的电磁脉冲压接装置,其最大放电能量为28 kJ。压接过程中,随着放电电压的升高,接线端子表面的温度升高。当放电电压为12 kV时,实现了铝合金高压线束与铜合金接线端子的可靠连接。采用光学显微镜分析连接界面的微观结构,并测试其电气性能和机械性能。分析结果表明:电磁脉冲压接技术可实现铝合金高压线束与接线端子、铝合金芯线之间的冶金结合,且连接界面出现了波纹形貌与涡旋形貌。测试结果显示:接头接触电阻测试、振动测试、拉力负荷测试均满足汽车行业标准和电缆接头国家标准。
温度会使硅光电倍增管的增益产生较大的漂移,进而影响硅光电倍增管的增益精度。为了使硅光电倍增管增益不随温度发生较大变化,设计了硅光电倍增管的自动增益校正系统,包括基于单片机的高压电源设计与采集系统设计。高电压模块精确工作的温度范围为−10~60 ℃,电源噪声约为30 mV,满足硅光电倍增管性能测试的需求。采集系统经过扫频测试与激光照射测试,可以较好地通过60 MHz的交流信号,并将光信号转变为较明显的电信号。该系统可以向京邦公司的硅光电倍增管阵列JARY-TP3050-8X8C提供工作电压与采集电路。