[1] Drake R P. High-energy-density physics: Fundamentals, inertial fusion and experimental astrophysics[M]. Berlin: Springer, 2006.
[2] Graziani F, Desjarlais M P, Redmer R, et al. Frontiers and challenges in warm dense matter[M]. Berlin: Springer, 2014.
[3] Moses E I, Boyd R N, Remington B A, et al. The National Ignition Facility: Ushering in a new age for high energy density science[J]. Phys Plasmas, 2009, 16: 041006. doi: 10.1063/1.3116505
[4] Kang Dongdong, Dai Jiayu. Dynamic electron-ion collisions and nuclear quantum effects in quantum simulation of warm dense matter[J]. J Phys: Condens Matter, 2018, 30: 073002. doi: 10.1088/1361-648X/aa9e29
[5] 郑君, 陈其峰, 顾云军, 等. 强粒子束产生温稠密物质热力学状态估计[J]. 强激光与粒子束, 2014, 26:035102. (Zheng Jun, Chen Qifeng, Gu Yunjun, et al. Thermodynamic properties of warm dense matter generated by strong particle beams[J]. High Power Laser and Particle Beams, 2014, 26: 035102 doi: 10.3788/HPLPB20142603.35102
[6] 陈其峰, 顾云军, 郑君, 等. 温密物质特性研究进展与评述[J]. 科学通报, 2017, 62(8):812-823. (Chen Qifeng, Gu Yunjun, Zheng Jun, et al. Review and progress in the study of properties of warm dense matter[J]. Chin Sci Bull, 2017, 62(8): 812-823 doi: 10.1360/N972016-00471
[7] Boehly T R, Hicks D G, Celliers P M, et al. Properties of fluid deuterium under double-shock compression to several Mbar[J]. Phys Plasmas, 2004, 11: L49-L52. doi: 10.1063/1.1778164
[8] Nora R, Theobald W, Betti R, et al. Gigabar spherical shock generation on the OMEGA laser[J]. Phys Rev Lett, 2015, 114: 045001. doi: 10.1103/PhysRevLett.114.045001
[9] Kritcher A L, Döppner T, Swift D, et al. Probing matter at Gbar pressures at the NIF[J]. High Energy Density Phys, 2014, 10: 27-34. doi: 10.1016/j.hedp.2013.11.002
[10] Zhao Yang, Yang Jiamin, Zhang Jiyan, et al. K-shell photoabsorption edge of strongly coupled matter driven by laser-converted radiation[J]. Phys Rev Lett, 2013, 111: 155003. doi: 10.1103/PhysRevLett.111.155003
[11] Qing Bo, Zhao Yang, Wei Minxi, et al. Time-resolved transmission measurements of warm dense iron plasma[J]. Chin Phys Lett, 2016, 33: 035203. doi: 10.1088/0256-307X/33/3/035203
[12] Zhao Yang, Zhang Zhiyu, Qing Bo, et al. K-shell photoabsorption edge of strongly coupled aluminum driven by laser-converted radiation[J]. Europhys Lett, 2017, 117: 65001. doi: 10.1209/0295-5075/117/65001
[13] Anisimov S I, Kapeliovich B L, Perelman T L. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. EkspTeorFiz, 1974, 66: 375-377.
[14] Ma Qian, Dai Jiayu, Kang Dongdong, et al. Molecular dynamics simulation of electron-ion temperature relaxation in dense hydrogen: A scheme of truncated Coulomb potential[J]. High Energy Density Phys, 2014, 13: 34-39. doi: 10.1016/j.hedp.2014.09.004
[15] Ma Qian, Dai Jiayu, Kang Dongdong, et al. Extremely low electron-ion temperature relaxation rates in warm dense hydrogen: Interplay between quantum electrons and coupled ions[J]. Phys Rev Lett, 2019, 122: 015001. doi: 10.1103/PhysRevLett.122.015001
[16] Ceperley D M. Path integrals in the theory of condensed helium[J]. Rev Mod Phys, 1995, 67(2): 279-355. doi: 10.1103/RevModPhys.67.279
[17] Schoof T, Groth S, Vorberger J, et al. Ab initio thermodynamic results for the degenerate electron gas at finite temperature[J]. Phys Rev Lett, 2015, 115: 130402. doi: 10.1103/PhysRevLett.115.130402
[18] Driver K P, Militzer B. All-electron path integral Monte Carlo simulations of warm dense matter: Application to water and carbon plasmas[J]. Phys Rev Lett, 2012, 108: 115502. doi: 10.1103/PhysRevLett.108.115502
[19] Collins L, Kwon I, Kress J, et al. Quantum molecular dynamics simulations of hot, dense hydrogen[J]. Phys Rev E, 1995, 52(6): 6202-6218. doi: 10.1103/PhysRevE.52.6202
[20] Holst B, Redmer R, Desjarlais M P. Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations[J]. Phys Rev B, 2008, 77: 184201. doi: 10.1103/PhysRevB.77.184201
[21] Lambert F, Clérouin J, Zérah G. Very-high-temperature molecular dynamics[J]. Phys Rev E, 2006, 73: 016403. doi: 10.1103/PhysRevE.73.016403
[22] Dai Jiayu, Yuan Jianmin. Large-scale efficient Langevin dynamics, and why it works[J]. Europhys Lett, 2009, 88: 20001. doi: 10.1209/0295-5075/88/20001
[23] Dai Jiayu, Hou Yong, Yuan Jianmin. Unified first principles description from warm dense matter to ideal ionized gas plasma: Electron-ion collisions induced friction[J]. Phys Rev Lett, 2010, 104: 245001. doi: 10.1103/PhysRevLett.104.245001
[24] Dai Jiayu, Hou Yong, Yuan Jianmin. Quantum Langevin molecular dynamic determination of the solar-interior equation of state[J]. Astrophys J, 2010, 721: 1158. doi: 10.1088/0004-637X/721/2/1158
[25] Dai Jiayu, Kang Dongdong, Zhao Zengxiu, et al. Dynamic ionic clusters with flowing electron bubbles from warm to hot dense iron along the Hugoniot curve[J]. Phys Rev Lett, 2012, 109: 175701. doi: 10.1103/PhysRevLett.109.175701
[26] Hou Yong, JinFengtao, Yuan Jianmin. Influence of the electronic energy level broadening on the ionization of atoms in hot and dense plasmas: An average atom model demonstration[J]. Phys Plasmas, 2006, 13: 093301. doi: 10.1063/1.2338023
[27] Hou Yong, Yuan Jianmin. Alternative ion-ion pair-potential model applied to molecular dynamics simulations of hot and dense plasmas: Al and Fe as examples[J]. Phys Rev E, 2009, 79: 016402. doi: 10.1103/PhysRevE.79.016402
[28] Su J T, Goddard III W A. Excited electron dynamics modeling of warm dense matter[J]. Phys Rev Lett, 2007, 99: 185003. doi: 10.1103/PhysRevLett.99.185003
[29] Su J T, Goddard III W A. The dynamics of highly excited electronic systems: Applications of the electron force field[J]. J Chem Phys, 2009, 131: 244501. doi: 10.1063/1.3272671
[30] Gu Yunjun, Chen Qifeng, Zheng Jian, et al. Multishock comparison of dense gaseous H<sub>2</sub>+He mixtures up to 30 GPa[J]. J Chem Phys, 2009, 130: 184506. doi: 10.1063/1.3124562
[31] Zheng Jian, Chen Qifeng, Gu Yunjun, et al. Hugoniot measurements of double-shocked precompressed dense xenon plasmas[J]. Phys Rev E, 2012, 86: 066406. doi: 10.1103/PhysRevE.86.066406
[32] Gu Yunjun, Chen Qifeng, Zheng Jian, et al. The equation of state, shock-induced molecule dissociation, and transparency loss for multi-compressed dense gaseous H<sub>2</sub>+D<sub>2</sub> mixtures[J]. J Appl Phys, 2012, 111: 013513. doi: 10.1063/1.3675281
[33] Zheng Jian, Chen Qifeng, Gu Yunjun, et al. Thermodynamics, compressibility, and phase diagram: Shock compression of supercritical fluid xenon[J]. J Chem Phys, 2014, 141: 124201. doi: 10.1063/1.4896071
[34] Zheng Jian, Chen Qifeng, Gu Yunjun, et al. Multishock compression properties of warm dense argon[J]. Sci Rep, 2015, 5: 16041. doi: 10.1038/srep16041
[35] Wang Cong, He Xiantu, Zhang Ping. Ab initio simulations of dense helium plasmas[J]. Phys Rev Lett, 2011, 106: 145002. doi: 10.1103/PhysRevLett.106.145002
[36] Wang Cong, He Xiantu, Zhang Ping. Thermophysical properties of hydrogen-helium mixtures: Re-examination of the mixing rules via quantum molecular dynamics simulations[J]. Phys Rev E, 2013, 88: 033106. doi: 10.1103/PhysRevE.88.033106
[37] Zhang Shen, Wang Hongwei, Kang Wei, et al. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas[J]. Phys Plasmas, 2016, 23: 042707. doi: 10.1063/1.4947212
[38] 吉诚, 李冰, 杨文革, 等. 静态超高压下氢的晶体结构实验研究[J]. 高压物理学报, 2020, 34:020101. (Ji Cheng, Li Bing, Yang Wenge, et al. Crystallographic studies of ultra-dense solid hydrogen[J]. Chin J High Press Phys, 2020, 34: 020101 doi: 10.11858/gywlxb.20200520
[39] Celliers M, Loubeyre P, Eggert J H, et al. Insulator-to-conduction transition in dense fluid helium[J]. Phys Rev Lett, 2010, 104: 184503. doi: 10.1103/PhysRevLett.104.184503
[40] Loubeyre P, Brygoo S, Eggert J H, et al. Extended data set for the equation of state of warm dense hydrogen isotopes[J]. Phys Rev B, 2012, 86: 144115. doi: 10.1103/PhysRevB.86.144115
[41] 李牧, 孙承纬, 赵剑衡. 固体材料高功率激光斜波压缩研究进展[J]. 爆炸与冲击, 2015, 35(2):145-156. (Li Mu, Sun Chengwei, Zhao Jianheng. Progress in high-power laser ramp compression of solids[J]. Explosion and Shock Waves, 2015, 35(2): 145-156 doi: 10.11883/1001-1455(2015)02-0145-12
[42] 种涛, 赵剑衡, 谭福利, 等. 斜波压缩下锡的相变动力学特性[J]. 高压物理学报, 2020, 34:011101. (Chong Tao, Zhao Jianheng, Tan Fuli, et al. Dynamic characteristics of phase transition of tin under ramp wave loading[J]. Chin J High Press Phys, 2020, 34: 011101 doi: 10.11858/gywlxb.20190828
[43] 蒲昱东, 陈伯伦, 黄天晅, 等. 激光间接驱动惯性约束聚变内爆物理实验研究[J]. 强激光与粒子束, 2015, 27:032015. (Pu Yudong, Chen Bolun, Huang Tianxuan, et al. Experimental studies of implosion physics of indirect-drive inertial confinement fusion[J]. High Power Laser and Particle Beams, 2015, 27: 032015 doi: 10.11884/HPLPB201527.032015
[44] Campbell E M, Goncharov V N, Sangster T C, et al. Laser-direct-drive program: Promise, challenge, and path forward[J]. Matter Radiat Extremes, 2017, 2: 37-54. doi: 10.1016/j.mre.2017.03.001
[45] Ping Y, Correa A A, Ogitsu T, et al. Warm dense matter created by isochoric laser heating[J]. High Energy Density Phys, 2010, 6(2): 246-257. doi: 10.1016/j.hedp.2009.12.009
[46] Amano Y, Miki Y, Takahashi T, et al. Isochoric heating of foamed metal using pulsed power discharge as a making technique of warm dense matter[J]. Rev Sci Instrum, 2012, 83: 085107. doi: 10.1063/1.4742986
[47] Glenzer S H, Gregori G, Lee R W, et al. Demonstration of spectrally resolved X-ray scattering in dense plasmas[J]. Phys Rev Lett, 2003, 90: 175002. doi: 10.1103/PhysRevLett.90.175002
[48] Passoni M, Bertagna L, Zani A. Target normal sheath acceleration: theory, comparison with experiments and future perspectives[J]. New J Phys, 2010, 12: 045012. doi: 10.1088/1367-2630/12/4/045012
[49] Liseykina T V, Borghesi M, Macchi A, et al. Radiation pressure acceleration by ultraintense laser pulses[J]. Plasma Phys Control Fusion, 2008, 50: 124033. doi: 10.1088/0741-3335/50/12/124033
[50] Yan X Q, Lin C, Sheng Z M, et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime[J]. Phys Rev Lett, 2008, 100: 135003. doi: 10.1103/PhysRevLett.100.135003
[51] Hoarty D J, Guymer T, James S F, et al. Equation of state studies of warm dense matter samples heated by laser produced proton beams[J]. High Energy Density Phys, 2012, 8(1): 50-54. doi: 10.1016/j.hedp.2011.11.008
[52] Sperling P, Gamboa E J, Lee H J, et al. Free-electron X-ray laser measurements of collisional-damped plasmons in isochorically heated warm dense matter[J]. Phys Rev Lett, 2015, 115: 115001. doi: 10.1103/PhysRevLett.115.115001
[53] Vinko S M, Ciricosta O, Cho B I, et al. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser[J]. Nature, 2012, 482: 59-62. doi: 10.1038/nature10746
[54] Bieniosek F M, Barnard J J, Friedman A. Ion-beam-driven warm dense matter experiments[J]. J Phys: Conf Ser, 2010, 44: 032028.
[55] Schonlein A, Boutoux G, Pikuz S, et al. Generation and characterization of warm dense matter isochorically heated by laser-induced relativistic electrons in a wire target[J]. Europhys Lett, 2016, 114: 45002. doi: 10.1209/0295-5075/114/45002
[56] Vorberger J, Donko Z, Tkachenko I M, et al. Dynamic ion structure factor of warm dense matter[J]. Phys Rev Lett, 2012, 109: 225001. doi: 10.1103/PhysRevLett.109.225001
[57] Mahieu B, Jourdain N, Ta Phuoc K, et al. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source[J]. Nat Commun, 2018, 9: 3276. doi: 10.1038/s41467-018-05791-4
[58] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys Rev, 1964, 136: B864. doi: 10.1103/PhysRev.136.B864
[59] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 1965, 140: A1133. doi: 10.1103/PhysRev.140.A1133
[60] Mermin N D. Thermal properties of the inhomogeneous electron gas[J]. Phys Rev, 1965, 137: A1441. doi: 10.1103/PhysRev.137.A1441
[61] Witt W C, del Rio B G, Dieterich J M. Orbital-free density functional theory for materials research[J]. J Mater Res, 2018, 33(7): 777-795. doi: 10.1557/jmr.2017.462
[62] Dai Jiayu, Hou Yong, Yuan Jianmin. Influence of ordered structures on electrical conductivity and XANES from warm and hot dense matter[J]. High Energy Density Phys, 2011, 7: 84. doi: 10.1016/j.hedp.2011.02.002
[63] Dai Jiayu, Hou Yong, Kang Dongdong, et al. Structure, equation of state, diffusion and viscosity of warm dense Fe under the conditions of a giant planet core[J]. New J Phys, 2013, 15: 045003. doi: 10.1088/1367-2630/15/4/045003
[64] Dai Jiayu, Gao Cheng, Sun Huayang, et al. Electronic and optical properties of warm dense lithium: strong coupling effects[J]. J Phys B, 2017, 50: 184004. doi: 10.1088/1361-6455/aa84f8
[65] Kang Dongdong, Dai Jiayu, Sun Huayang, et al. Quantum simulation of thermally-driven phase transition and oxygen K-edge X-ray absorption of high-pressure ice[J]. Sci Rep, 2013, 3: 3272. doi: 10.1038/srep03272
[66] Kang Dongdong, Sun Huayang, Dai Jiayu, et al. Nuclear quantum dynamics in dense hydrogen[J]. Sci Rep, 2014, 4: 5484.
[67] Su J T, Goddard III W A. Mechanisms of Auger-induced chemistry derived from wave packet dynamics[J]. Proc Natl Acad Sci USA, 2009, 106(4): 1001-1005. doi: 10.1073/pnas.0812087106
[68] Kim H, Su J T, Goddard III W A. High-temperature high-pressure phases of lithium from electron force field (eFF) quantum electron dynamics simulations[J]. Proc Natl Acad Sci USA, 2011, 108(37): 15101-15105. doi: 10.1073/pnas.1110322108
[69] Kaganov M l, Lifshitz I M, Tanatarov L V. Relaxation between electrons and the crystalline lattice[J]. J Exp Theor Phys, 1957, 4(2): 173.
[70] Ivanov D S, Zhigilei L V. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films[J]. Phys Rev B, 2003, 68: 064114. doi: 10.1103/PhysRevB.68.064114
[71] Duffy D M, Rutherford A M. Including the effects of electronic stopping and electron–ion interactions in radiation damage simulations[J]. J Phys: Condens Matter, 2006, 19: 016207.
[72] Rutherford A M, Duffy D M. The effect of electron–ion interactions on radiation damage simulations[J]. J Phys: Condens Matter, 2007, 19(49): 496201. doi: 10.1088/0953-8984/19/49/496201
[73] Norman G E, Starikov S V, Stegailov V V, et al. Atomistic modeling of warm dense matter in the two-temperature state[J]. Contrib Plasma Phys, 2013, 53(2): 129-139. doi: 10.1002/ctpp.201310025
[74] Recoules V, Clérouin J, Zérah G, et al. Effect of intense laser irradiation on the lattice stability of semiconductors and metals[J]. Phys Rev Lett, 2006, 96: 055503. doi: 10.1103/PhysRevLett.96.055503
[75] Lin Zhibin, Zhigilei L V. Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations: Molecular dynamics study[J]. Phys Rev B, 2006, 73: 184113. doi: 10.1103/PhysRevB.73.184113
[76] Ivanov D S, Zhigilei L V. Effect of pressure relaxation on the mechanisms of short-pulse laser melting[J]. Phys Rev Lett, 2003, 91: 105701. doi: 10.1103/PhysRevLett.91.105701
[77] Zhigilei L V, Garrison B J. Pressure waves in microscopic simulations of laser ablation[J]. Mat Res Soc Symp Proc, 1999, 538: 491.
[78] Etcheverry J I, Mesaros M. Molecular dynamics simulation of the production of acoustic waves by pulsed laser irradiation[J]. Phys Rev B, 1999, 60(13): 9430-9434. doi: 10.1103/PhysRevB.60.9430
[79] Ernstorfer R, Harb M, Hebeisen C T, et al. The Formation of warm dense matter: Experimental evidence for electronic bond hardening in gold[J]. Science, 2009, 323: 1033-1037. doi: 10.1126/science.1162697
[80] Daraszewicz S L, Giret Y, Naruse N, et al. Structural dynamics of laser-irradiated gold nanofilms[J]. Phys Rev B, 2013, 88: 184101. doi: 10.1103/PhysRevB.88.184101
[81] Giret Y, Naruse N, Daraszewicz S L, et al. Determination of transient atomic structure of laser-excited materials from time-resolved diffraction data[J]. Appl Phys Lett, 2013, 103: 253107. doi: 10.1063/1.4847695
[82] Mo M Z, Chen Z, Li R K, et al. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction[J]. Science, 2018, 360(6396): 1451-1455. doi: 10.1126/science.aar2058
[83] Chen Z, Mo M, Soulard L, et al. Interatomic potential in the nonequilibrium warm dense matter regime[J]. Phys Rev Lett, 2018, 121: 075002. doi: 10.1103/PhysRevLett.121.075002
[84] Zeng Qiyu, Dai Jiayu. Structural transition dynamics of the formation of warm dense gold: From an atomic scale view[J]. Science China: Physics, Mechanics & Astronomy, 2020, 63: 263011. doi: 10.1007/s11433-019-1466-2
[85] Silvestrelli P L, Alavi A, Parrinello M, et al. Structural, dynamical, electronic, and bonding properties of laser-heated silicon: An ab initio molecular-dynamics study[J]. Phys Rev B, 1997, 56(7): 3806. doi: 10.1103/PhysRevB.56.3806
[86] Gambirasio A, Bernasconi M, Colombo L. Laser-induced melting of silicon: A tight-binding molecular dynamics simulation[J]. Phys Rev B, 2000, 61: 8233. doi: 10.1103/PhysRevB.61.8233
[87] Siders C W, Cavalleri A, Sokolowski-Tinten K, et al. Detection of nonthermal melting by ultrafast X-ray diffraction[J]. Science, 1999, 286: 1340-1342. doi: 10.1126/science.286.5443.1340
[88] Harb M, Ernstorfer R, Hebeisen C T, et al. Electronically driven structure changes of Si captured by femtosecond electron diffraction[J]. Phys Rev Lett, 2008, 100: 155504. doi: 10.1103/PhysRevLett.100.155504
[89] Siwick B J, Dwyer J R, Jordan R E, et al. An atomic-level view of melting using femtosecond electron diffraction[J]. Science, 2003, 302(5649): 1382-1385. doi: 10.1126/science.1090052
[90] Rousse A, Rischel C, Fourmaux S, et al. Non-thermal melting in semiconductors measured at femtosecond resolution[J]. Nature, 2001, 410: 65-68. doi: 10.1038/35065045
[91] Lindenberg A M, Larsson J, Sokolowski-Tinten K, et al. Atomic-scale visualization of inertial dynamics[J]. Science, 2005, 308(5720): 392-395. doi: 10.1126/science.1107996
[92] Mazevet S, Clerouin J, Recoules V, et al. Ab initio simulations of the optical properties of warm dense gold[J]. Phys Rev Lett, 2005, 95: 085002. doi: 10.1103/PhysRevLett.95.085002
[93] Xu B, Hu S X. Effects of electron-ion temperature equilibrium on inertial confinement fusion implosions[J]. Phys Rev E, 2011, 84: 016408. doi: 10.1103/PhysRevE.84.016408
[94] Landau L D. Kinetic equation for the Coulomb effect[J]. Zh Eksp Teor Fiz, 1937, 7: 203.
[95] Spitzer L. Physics of fully ionized gases[M]. New York: Interscience, 1967.
[96] Gericke D O, Murillo M S, Schlanges M. Dense plasma temperature equilibration in the binary collision approximation[J]. Phys Rev E, 2002, 65: 036418. doi: 10.1103/PhysRevE.65.036418
[97] Brown L S, Preston D L, Singleton R L. Electron-ion energy partition when a charged particle slows in a plasma: Results[J]. Phys Rev E, 2012, 86: 016406. doi: 10.1103/PhysRevE.86.016406
[98] Glosli J N, Graziani R R, More R M, et al. Molecular dynamics simulations of temperature equilibration in dense hydrogen[J]. Phys Rev E, 2008, 78: 025401. doi: 10.1103/PhysRevE.78.025401
[99] Falk K, Collins L A, Gambo E J, et al. Combined X-ray scattering, radiography, and velocity interferometry/streaked optical pyrometry measurements of warm dense carbon using a novel technique of shock-and-release[J]. Phys Plasmas, 2014, 21: 056309. doi: 10.1063/1.4876613
[100] Widmann K, Ao T, Foord M E, et al. Single-state measurement of electrical conductivity of warm dense gold[J]. Phys Rev Lett, 2004, 92: 125002. doi: 10.1103/PhysRevLett.92.125002
[101] Ao T, Ping Y, Widmann K, et al. Optical properties in nonequilibrium phase transitions[J]. Phys Rev Lett, 2006, 96: 055001. doi: 10.1103/PhysRevLett.96.055001
[102] Chen Z, Sametoglu V, Tsui Y Y, et al. Flux-limited nonequilibrium electron energy transport in warm dense gold[J]. Phys Rev Lett, 2012, 108: 165001. doi: 10.1103/PhysRevLett.108.165001
[103] Chen Z, Holst B, Kirkwood S E, et al. Evolution of ac conductivity in nonequilibrium warm dense gold[J]. Phys Rev Lett, 2013, 110: 135001. doi: 10.1103/PhysRevLett.110.135001
[104] Kubo R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems[J]. J Phys Soc Jpn, 1957, 12: 570-586. doi: 10.1143/JPSJ.12.570
[105] Greenwood D A. The Boltzmann equation in the theory of electrical conduction in metals[J]. Proc Phys Soc London, 1958, 71: 585-596. doi: 10.1088/0370-1328/71/4/306
[106] Witte B B L, Fletcher L B, Galtier E, et al. Warm dense matter demonstrating non-Drude conductivity from observations of nonlinear plasmon damping[J]. Phys Rev Lett, 2017, 118: 225001. doi: 10.1103/PhysRevLett.118.225001
[107] Lu Binbin, Kang Dongdong, Wang Dan, et al. Towards the same line of liquid-liquid phase transition of dense hydrogen from various theoretical predictions[J]. Chin Phys Lett, 2019, 36: 103102. doi: 10.1088/0256-307X/36/10/103102
[108] Ma Qian, Kang Dongdong, Zhao Zengxiu, et al. Directly calculated electrical conductivity of hot dense hydrogen from molecular dynamics simulation beyond Kubo-Greenwood formula[J]. Phys Plasmas, 2018, 25: 012707. doi: 10.1063/1.5013631
[109] Glenzer S H, Redmer R. X-ray Thomson scattering in high energy density plasmas[J]. Rev Mod Phys, 2009, 81: 1625. doi: 10.1103/RevModPhys.81.1625
[110] Baczewski A D, Shulenburger L, Desjarlais M P, et al. X-ray Thomson scattering in warm dense matter without the Chihara decomposition[J]. Phys Rev Lett, 2016, 116: 115004. doi: 10.1103/PhysRevLett.116.115004
[111] Chihara J. Interaction of photons with plasmas and liquid metals—photoabsorption and scattering[J]. J Phys: Condens Matter, 2000, 12: 231. doi: 10.1088/0953-8984/12/3/303