[1] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Rev Mod Phys, 2009, 81: 1229-1285. doi: 10.1103/RevModPhys.81.1229
[2] 陈民, 盛政明, 马燕云, 等. 台面型电子加速器—激光尾波场加速器[J]. 物理, 2006, 35:1016-1027. (Chen Min, Sheng Zhengming, Ma Yanyun, et al. A tabletop accelerator—The laser wakefield accelerator[J]. Physics, 2006, 35: 1016-1027 doi: 10.3321/j.issn:0379-4148.2006.12.008
[3] Tajima T, Dawson J M. Laser Electron Accelerator[J]. Phys Rev Lett, 1979, 43: 267-270. doi: 10.1103/PhysRevLett.43.267
[4] 盛政明, 陈民, 翁苏明, 等. 超短超强激光驱动新型粒子加速器: 机遇和挑战[J]. 物理, 2018, 47(12):753-762. (Sheng Zhenming, Chen Min, Weng Suming, et al. Novel particle accelerators driven by ultrashort and ultraintense lasers: opportunities and challenges[J]. Phyisics, 2018, 47(12): 753-762 doi: 10.7693/wl20181201
[5] 陈思富, 黄子平, 石金水. 带电粒子加速器的基本类型及其技术实现[J]. 强激光与粒子束, 2020, 32:045101. (Chen Sifu, Huang Ziping, Shi Jinshui. Basic types and technological implementation of charged particle accelerators[J]. High Power Laser and Particle Beams, 2020, 32: 045101 doi: : 10.11884/HPLPB202032.190424
[6] Esarey E, Sprangle P, Krall J, et al. Overview of plasma-based accelerator concepts[J]. IEEE Trans Plasma Sci, 1996, 24: 252-288. doi: 10.1109/27.509991
[7] Corde S, Phuoc K T, Lambert G, et al. Femtosecond X rays from laser-plasma accelerators[J]. Rev Mod Phys, 2013, 85: 1-48. doi: 10.1103/RevModPhys.85.1
[8] Leemans W, Esarey E. Laser-driven plasma-wave electron accelerators[J]. Phys Today, 2009, 62: 44.
[9] Schroeder C B, Esarey E, Geddes C G R, et al. Physics considerations for laser-plasma linear colliders[J]. Phys Rev ST-Acce Beams, 2010, 13: 101301. doi: 10.1103/PhysRevSTAB.13.101301
[10] Maier A R, Meseck A, Reiche S, et al. Demonstration scheme for a laser-plasma-driven free-electron laser[J]. Phys Rev X, 2012, 2: 031019.
[11] Nakajima K, Fisher D, Kawakubo T, et al. Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse[J]. Phys Rev Lett, 1995, 74: 4428-4431. doi: 10.1103/PhysRevLett.74.4428
[12] Malka V, Fritzler S, Lefebvre E, et al. Electron Acceleration by a wake field forced by an intense ultrashort laser pulse[J]. Science, 2002, 298: 1596-1600. doi: 10.1126/science.1076782
[13] Mangles S P D, Murphy C D, Najmudin Z, et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions[J]. Nature, 2004, 431: 535-538. doi: 10.1038/nature02939
[14] Geddes C G R, Toth C, van Tilbrg J, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding[J]. Nature, 2004, 431: 538-541. doi: 10.1038/nature02900
[15] Faure J, Glinec Y, Pukhov A, et al. A laser-plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431: 541-544. doi: 10.1038/nature02963
[16] Faure J, Rechatin C, Norlin A, et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 2006, 444: 737-739. doi: 10.1038/nature05393
[17] Esarey E, Hubbard R F, Leemans W P, et al. Electron injection into plasma wake fields by colliding laser pulses[J]. Phys Rev Lett, 1997, 79: 2682. doi: 10.1103/PhysRevLett.79.2682
[18] Leemans W P, Nagler B, Gonsalves A J, et al. GeV electron beams from a centimeter-scale accelerator[J]. Nat Phys, 2006, 2: 696-699. doi: 10.1038/nphys418
[19] Osterhoff J, Popp A, Major Z, et al. Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell[J]. Phys Rev Lett, 2008, 101: 085002. doi: 10.1103/PhysRevLett.101.085002
[20] Albert F, Thomas A G R. Applications of laser wakefield accelerator-based light sources[J]. Plasma Phys Contro Fusion, 2016, 58: 103001. doi: 10.1088/0741-3335/58/10/103001
[21] Dawson J M. Particle simulation of plasmas[J]. Rev Mod Phys, 1983, 55: 403. doi: 10.1103/RevModPhys.55.403
[22] Vay J L, Almgren A, Bell J, et al. Warp-X: A new exascale computing platform for beam-plasma simulations[J]. Nuclear Instruments & Methods in Physics Research Section A, 2018, 909: 476.
[23] Fonseca R A, Silva L O, Tsung F S, et al. OSIRIS: A three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators?[J]. Lecture Notes in Computer Science, 2002, 2331: 342-251.
[24] Yu P, Xu X, Decyk V K, et al. Modeling of laser wakefield acceleration in Lorentz boosted frame using EM-PIC code with spectral solver[J]. J Comput Phys, 2014, 266: 124-138. doi: 10.1016/j.jcp.2014.02.016
[25] Pukhov A, Meyer-ter-Vehn J. Laser wake field acceleration: The highly non-linear broken-wave regime[J]. Appl Phys B, 2002, 74: 355-361.
[26] Gordienko S, Pukhov A. Scaling for ultrarelativistic laser plasmas and quasimonoenergetic electrons[J]. Phys Plasmas, 2005, 12: 043109. doi: 10.1063/1.1884126
[27] Lu W, Huang C, Zhou M, et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime[J]. Phys Rev Lett, 2006, 96: 165002. doi: 10.1103/PhysRevLett.96.165002
[28] Lu W, Tzoufras M, Joshi C, et al. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime[J]. Phys Rev ST-Acce Beams, 2007, 10: 061301. doi: 10.1103/PhysRevSTAB.10.061301
[29] Chen M, Sheng Z M, Ma Y Y, et al. Electron injection and trapping in a laser wakefield by field ionization to high-charge states of gases[J]. J Appl Phys, 2006, 99: 056109. doi: 10.1063/1.2179194
[30] Kalmykov S, Yi S A, Khudik V, et al. Electron self-injection and trapping into an evolving plasma bubble[J]. Phys Rev Lett, 2009, 103: 135004. doi: 10.1103/PhysRevLett.103.135004
[31] Davoine X, Lefebvre E, Rechatin C, et al. Cold optical injection producing monoenergetic, multi-GeV electron bunches[J]. Phys Rev Lett, 2009, 102: 065001. doi: 10.1103/PhysRevLett.102.065001
[32] Downer M C, Zgadzaj R, Debus A, et al. Diagnostics for plasma-based electron accelerators[J]. Rev Mod Phys, 2018, 90: 035002. doi: 10.1103/RevModPhys.90.035002
[33] Fuchs M, Weingartner R, Popp A, et al. Laser-driven soft-X-ray undulator source[J]. Nature Phys, 2009, 5: 826. doi: 10.1038/nphys1404
[34] Kneip S, McGuffey C, Martins J L, et al. Bright spatially coherent synchrotron X-rays from a table-top source[J]. Nature Phys, 2010, 6: 980. doi: 10.1038/nphys1789
[35] Cipiccia S, Islam M R, Ersfeld B, et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake[J]. Nature Phys, 2011, 7: 867. doi: 10.1038/nphys2090
[36] Ta Phuoc K, Corde S, Thaury C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 2012, 6: 308. doi: 10.1038/nphoton.2012.82
[37] Chen S, Powers N D, Ghebregziabher I, et al. MeV-energy X rays from inverse compton scattering with laser-wakefield accelerated electrons[J]. Phys Rev Lett, 2013, 110: 155003. doi: 10.1103/PhysRevLett.110.155003
[38] Yan W, Fruhling C, Golovin G, et al. High-order multiphoton Thomson scattering[J]. Nat Photon, 2017, 11: 514. doi: 10.1038/nphoton.2017.100
[39] Fourmaux S, Corde S, Phuoc K T. Single shot phase contrast imaging using laser-produced Betatron X-ray beams[J]. Optics Letters, 2011, 36: 2426. doi: 10.1364/OL.36.002426
[40] Wenz J, Schleede S, Khrennikov K, et al. Quantitative X-ray phase-contrast microtomography from a compact laser-driven Betatron source[J]. Nature Communications, 2015, 6: 7568. doi: 10.1038/ncomms8568
[41] Doepp A, Hehn L, Goetzfried J, et al. Quick X-ray microtomography using a laser-driven Betatron source[J]. Optica, 2018, 5: 199. doi: 10.1364/OPTICA.5.000199
[42] Cole J M, Symes D R, Lopes N C, et al. High-resolution CT of a mouse embryo using a compact laser-driven X-ray Betatron source[J]. Proc Natl Acad Sci, 2018, 115: 6335-6340. doi: 10.1073/pnas.1802314115
[43] Yabashi M, Tanaka H. The next ten years of X-ray science[J]. Nat Photon, 2017, 11: 12-14. doi: 10.1038/nphoton.2016.251
[44] Guenot D, Gustas D, Vernier A, et al. Relativistic electron beams driven by kHz single-cycle light pulses[J]. Nat Photon, 2017, 11: 293-296. doi: 10.1038/nphoton.2017.46
[45] Nie Z, Pai C H, Hua J, et al. Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure[J]. Nat Photon, 2018, 12: 489-494. doi: 10.1038/s41566-018-0190-8
[46] Zhu X L, Weng S M, Chen M, et al. Efficient generation of relativistic near-single-cycle mid-infrared pulses in plasmas[J]. Light: Science & Applications, 2020, 9: 46.
[47] Zhu X L, Chen M, Weng S M, et al. Single-cycle terawatt twisted-light pulses at midinfrared wavelengths above 10 μm[J]. Phys Rev Appl, 2019, 12: 054024. doi: 10.1103/PhysRevApplied.12.054024
[48] Yu L L, Zhao Y, Qian L J, et al. Plasma optical modulators for intense lasers[J]. Nat Commun, 2016, 7: 11893. doi: 10.1038/ncomms11893
[49] Sheng Z M, Mima K, Zhang J, et al. Emission of electromagnetic pulses from laser wakefields through linear mode conversion[J]. Phys Rev Lett, 2005, 94: 095003. doi: 10.1103/PhysRevLett.94.095003
[50] Liao G Q, Li Y T, Li C, et al. Bursts of terahertz radiation from large-scale plasmas irradiated by relativistic picosecond laser pulses[J]. Phys Rev Lett, 2015, 114: 255001. doi: 10.1103/PhysRevLett.114.255001
[51] Chang W W, Zhang L F, Shao F Q, et al. Laser plasma wave electron accelerators[J]. Acta Physica Sinica, 1991, 40: 182-189. doi: .orp
[52] Chen L M, Kotaki H, Nakajima K, et al. Self-guiding of 100 TW femtosecond laser pulses in centimeter-scale underdense plasma[J]. Phys Plasmas, 2007, 14: 040703. doi: 10.1063/1.2720374
[53] Liu J S, Xia C Q, Wang W T, et al. All-optical cascaded laser wakefield accelerator using ionization-induced injection[J]. Phys Rev Lett, 2011, 107: 035001. doi: 10.1103/PhysRevLett.107.035001
[54] Wang W T, Li W T, Liu J S, et al. high-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control[J]. Phys Rev Lett, 2016, 117: 124801. doi: 10.1103/PhysRevLett.117.124801
[55] Zeng M, Chen M, Yu L L, et al. Multichromatic narrow-energy-spread electron bunches from laser-wakefield acceleration with dual-color lasers[J]. Phys Rev Lett, 2015, 114: 084801. doi: 10.1103/PhysRevLett.114.084801
[56] Mirzaie M, Li S, Zeng M, et al. Demonstration of self-truncated ionization injection for GeV electron beams[J]. Sci Rep, 2015, 5: 14659. doi: 10.1038/srep14659
[57] Li F Y, Sheng Z M, Liu Y, et al. Dense attosecond electron sheets from laser wakefields using an up-ramp density transition[J]. Phys Rev Lett, 2013, 110: 135002. doi: 10.1103/PhysRevLett.110.135002
[58] Zhang C J, Hua J F, Wan Y, et al. Femtosecond probing of plasma wakefields and observation of the plasma wake reversal using a relativistic electron bunch[J]. Phys Rev Lett, 2017, 119: 064801. doi: 10.1103/PhysRevLett.119.064801
[59] Yan W, Chen L, Li D, et al. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble[J]. Proc Natl Acad Sci, 2014, 111: 5825-5830. doi: 10.1073/pnas.1404336111
[60] Vieira J, Mendonca J T. Nonlinear laser driven donut wakefields for positron and electron acceleration[J]. Phys Rev Lett, 2014, 112: 215001. doi: 10.1103/PhysRevLett.112.215001
[61] Chen Y Y, He P L, Shaisultanov R, et al. Polarized positron beams via intense two-color laser pulses[J]. Phys Rev Lett, 2019, 123: 174801. doi: 10.1103/PhysRevLett.123.174801
[62] Wu Y T, Ji L L, Geng X S, et al. Spin filter for polarized electron acceleration in plasma wakefields[J]. Phys Rev Appl, 2020, 13: 044064. doi: 10.1103/PhysRevApplied.13.044064
[63] Sahai A A, Tajima T, Shiltsev V D. Schemes of laser muon acceleration: Ultra-short, micron-scale beams[J]. International Journal of Modern Physics A, 2019, 34: 1943008. doi: 10.1142/S0217751X19430085
[64] Gonsalves A J. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide[J]. Phys Rev Lett, 2019, 122: 084801. doi: 10.1103/PhysRevLett.122.084801
[65] Steinke S, van Tilborg J, Benedetti C, et al. Multistage coupling of independent laser-plasma accelerators[J]. Nature, 2016, 530: 190-193. doi: 10.1038/nature16525
[66] Luo J, Chen M, Wu W Y, et al. Multistage coupling of laser-wakefield accelerators with curved plasma channels[J]. Phys Rev Lett, 2018, 120: 154801. doi: 10.1103/PhysRevLett.120.154801
[67] Nakajima K. Seamless multistage laser-plasma acceleration toward future high-energy colliders[J]. Light: Science & Applications, 2018, 7: 21.
[68] Zigler A, Bolton M, Ferber Y, et al. Consolidating multiple femtosecond lasers in coupled curved plasma capillaries[J]. Appl Phys Lett, 2018, 113: 183505. doi: 10.1063/1.5046400
[69] Xu X L, Hua J F, Wu Y P, et al. Physics of phase space matching for staging plasma and traditional accelerator components using longitudinally tailored plasma profiles[J]. Phys Rev Lett, 2016, 116: 124801. doi: 10.1103/PhysRevLett.116.124801
[70] Chen M, Luo J, Li F Y, et al. Tunable synchrotron-like radiation from centimeter scale plasma channels[J]. Light: Science & Applications, 2016, 5: e16015.
[71] Doepp A, Mahieu B, Lifschitz A, et al. Stable femtosecond X-rays with tunable polarization from a laser-driven accelerator[J]. Light: Science & Applications, 2017, 6: e17086.
[72] Walker P A, Alesini P D, Alexandrova A S, et al. Horizon 2020 EuPRAXIA design study[J]. Journal of Physics Conference Series, 2017, 874: 012029. doi: 10.1088/1742-6596/874/1/012029