[1] She H, Tan S. Development and application prospects of high-energy laser weapon[J]. Infrared and Laser Engineering, 2002, 31(3): 267-271.
[2] Abramov P I, Kuznetsov E V, Skvortsov L A. Prospects of using quantum-cascade lasers in optoelectronic countermeasure systems[J]. Journal of Optical Technology, 2017, 84(5): 331-341. doi: 10.1364/JOT.84.000331
[3] Gibbon P, Förster E. Short-pulse laser-plasma interactions[J]. Plasma Physics and Controlled Fusion, 1996, 38(6): 769. doi: 10.1088/0741-3335/38/6/001
[4] Faure J, Glinec Y, Pukhov A, et al. A laser–plasma accelerator producing monoenergetic electron beams[J]. Nature, 2004, 431(7008): 541-544. doi: 10.1038/nature02963
[5] Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149-e149.
[6] Delaigue M, Hönninger C, Torres R, et al. Comparative ultrafast laser source study for advanced materials processing[C]//IEEE Conference on Lasers and Electro-Optics. 2012: 1-2.
[7] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. doi: 10.1016/0030-4018(85)90151-8
[8] Yanovsky V, Felix C, Mourou G. Why ring regenerative amplification(regen)?[J]. Applied Physics B, 2002, 74(1): s181-s183.
[9] Singh S, Smith R G, Uitert L G V. Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at room temperature[J]. Physical Review B, Condensed Matter, 1974, 10(6): 2566-2572. doi: 10.1103/PhysRevB.10.2566
[10] Harmer A L, Linz A A, Gabbe D R. Fluorescence of Nd3+ in lithium yttrium fluoride[J]. Journal of Physics and Chemistry of Solids, 1969, 90(6): 1483-1491.
[11] Sharp E J. High-efficiency Nd3+: LiYF4 laser[J]. Journal of Applied Physics, 1973, 44(12): 5399. doi: 10.1063/1.1662164
[12] 胡丽丽, 陈树彬, 孟涛, 等. 大口径高性能激光钕玻璃研究进展[J]. 强激光与粒子束, 2011, 32(10):2560-2564. (Hu Lili, Chen Shubin, Meng Tao, et al. Advances in high performance large aperture neodymium laser glasses[J]. High Power Laser and Particle Beams, 2011, 32(10): 2560-2564
[13] Murray J E, Lowdermilk W H. Nd: YAG regenerative amplifier[J]. Journal of Applied Physics, 1980, 51(7): 3548-3556. doi: 10.1063/1.328194
[14] Bado P, Bouvier M, Coe J S. Nd: YLF mode-locked oscillator and regenerative amplifier[J]. Optics Letters, 1987, 12(5): 319-321. doi: 10.1364/OL.12.000319
[15] Saeed M, Kim D, Dimauro L F. Optimization and characterization of a high repetition rate, high intensity Nd: YLF regenerative amplifier[J]. Applied Optics, 1991, 30(18): 2527. doi: 10.1364/AO.30.002527
[16] Dimmick T E. Semiconductor-laser-pumped, CW mode-locked Nd: phosphate glass laser oscillator and regenerative amplifier[J]. Optics Letters, 1990, 15(3): 177-179. doi: 10.1364/OL.15.000177
[17] Gifford M, Weingarten K J. Diode-pumped Nd: YLF regenerative amplifier[J]. Optics Letters, 1992, 17(24): 1788-1790. doi: 10.1364/OL.17.001788
[18] Naito K, Ohmi M, Ishikawa K, et al. Demonstration of high energy extraction efficiency in a laser-diode pumped high gain Nd: YAG regenerative amplifier[J]. Applied Physics Letters, 1994, 64(10): 1186. doi: 10.1063/1.110884
[19] Turi L, Juhasz T. High-power longitudinally end-diode-pumped Nd: YLF regenerative amplifier[J]. Optics Letters, 1995, 20(2): 154-156. doi: 10.1364/OL.20.000154
[20] Bagnoud V, Luce J, Videau L, et al. Diode-pumped regenerative amplifier delivering 100-mJ single-mode laser pulses[J]. Optics Letters, 2001, 26(6): 337-339. doi: 10.1364/OL.26.000337
[21] Sekine T, Matsuoka S I, Yasuhara R, et al. 84 dB amplification, 0.46 J in a 10 Hz output diode-pumped Nd: YLF ring amplifier with phase-conjugated wavefront corrector[J]. Optics Express, 2010, 18(13): 13927-13934. doi: 10.1364/OE.18.013927
[22] Braun A, Liu X, Kopf D, et al. Diode-pumped Nd: glass regenerative amplifier for subpicosecond microjoule-level pulses[J]. Applied Optics, 1997, 36(18): 4163-4167. doi: 10.1364/AO.36.004163
[23] Ribeyre X, Videau L, Migus A, et al. Nd: glass diode-pumped regenerative amplifier, multimillijoule short-pulse chirped-pulse-amplifier laser[J]. Optics Letters, 2003, 28(15): 1374-1376. doi: 10.1364/OL.28.001374
[24] Rapoport W R, Khattak C P. Titanium sapphire laser characteristics[J]. Applied Optics, 1988, 27(13): 2677-2684. doi: 10.1364/AO.27.002677
[25] Moulton P F. Spectroscopic and laser characteristics of Ti2O3[J]. J Opt Soc Am B, 1986, 3(1): 125-133. doi: 10.1364/JOSAB.3.000125
[26] Xu M, Si J L, Zhang X C, et al. Study on thermal properties of titanium-doped sapphire crystal[J]. Journal of Synthetic Crystals, 2014, 43(5): 1043-1049.
[27] Salin F, Squier J, Mourou G, et al. Multikilohertz Ti: Al2O3 amplifier for high-power femtosecond pulses[J]. Optics Letters, 1991, 16(24): 1964-1966. doi: 10.1364/OL.16.001964
[28] Norris T B. Femtosecond pulse amplification at 250 kHz with a Ti: sapphire regenerative amplifier and application to continuum generation[J]. Optics Letters, 1992, 17(14): 1009-1011. doi: 10.1364/OL.17.001009
[29] Rudd J V, Korn G, Kane S, et al. Chirped-pulse amplification of 55-fs pulses at a 1-kHz repetition rate in a Ti: Al2O3 regenerative amplifier[J]. Optics Letters, 1993, 18(23): 2044-2046. doi: 10.1364/OL.18.002044
[30] Wynne K, Reid G D, Hochstrasser R M. Regenerative amplification of 30-fs pulses in Ti: sapphire at 5 kHz[J]. Optics Letters, 1994, 19(12): 895-897. doi: 10.1364/OL.19.000895
[31] Yamakawa K, Aoyama M, Matsuoka S, et al. Generation of 16-fs, 10-TW pulses at a 10-Hz repetition rate with efficient Ti: sapphire amplifiers[J]. Optics Letters, 1998, 23(7): 525-527. doi: 10.1364/OL.23.000525
[32] Nabekawa Y, Shimizu Y, Midorikawa K. Sub-20-fs terawatt-class laser system with a mirrorless regenerative amplifier and an adaptive phase controller[J]. Optics Letters, 2002, 27(14): 1265-1267. doi: 10.1364/OL.27.001265
[33] Gaudiosi D M, Lytle A L, Kohl P, et al. 11-W average power Ti: sapphire amplifier system using downchirped pulse amplification[J]. Optics Letters, 2004, 29(22): 2665-2667. doi: 10.1364/OL.29.002665
[34] Hong K H, Kostritsa S, Yu T J, et al. 100-kHz high-power femtosecond Ti: sapphire laser based on downchirped regenerative amplification[J]. Optics Express, 2006, 14(2): 970-978. doi: 10.1364/OPEX.14.000970
[35] Takada H, Kakehata M, Torizuka K. High-repetition-rate 12 fs pulse amplification by a Ti: sapphire regenerative amplifier system[J]. Optics Letters, 2006, 31(8): 1145-1147. doi: 10.1364/OL.31.001145
[36] Yang J Z H, Walker B C. 0.09-terawatt pulses with a 31% efficient, kilohertz repetition-rate Ti: sapphire regenerative amplifier[J]. Optics Letters, 2001, 26(7): 453-455. doi: 10.1364/OL.26.000453
[37] Zhavoronkov N, Korn G. Regenerative amplification of femtosecond laser pulses in Ti: sapphire at multikilohertz repetition rates[J]. Optics Letters, 2004, 29(2): 198-200. doi: 10.1364/OL.29.000198
[38] Matsushima I, Yashiro H, Tomie T. 10 kHz 40 W Ti: sapphire regenerative ring amplifier[J]. Optics Letters, 2006, 31(13): 2066-2068. doi: 10.1364/OL.31.002066
[39] Zhang X, Schneider E, Taft G, et al. Multi-microjoule, MHz repetition rate Ti: sapphire ultrafast regenerative amplifier system[J]. Optics Express, 2012, 20(7): 7015-7021. doi: 10.1364/OE.20.007015
[40] Backus S, Kirchner M, Lemons R, et al. Direct diode pumped Ti: sapphire ultrafast regenerative amplifier system[J]. Optics Express, 2017, 25(4): 3666-3674. doi: 10.1364/OE.25.003666
[41] Sumida D S, Fan T Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media[J]. Optics Letters, 1994, 19(17): 1343-1345. doi: 10.1364/OL.19.001343
[42] Hönninger C, Paschotta R, Graf M, et al. Ultrafast ytterbium-doped bulk lasers and laser amplifiers[J]. Applied Physics B, 1999, 69(1): 3-17. doi: 10.1007/s003400050762
[43] Kuleshov N V, Lagatsky A A, Podlipensky A V, et al. Pulsed laser operation of Yb-doped KY(WO4)2 and KGd (WO4)2[J]. Optics Letters, 1997, 22(17): 1317-1319. doi: 10.1364/OL.22.001317
[44] Brenier A, Boulon G. Overview of the best Yb3+ -doped laser crystals[J]. Journal of Alloys & Compounds, 2001, 323(1): 210-213.
[45] Paradis C, Modsching N, Wittwer V J, et al. Generation of 35-fs pulses from a Kerr lens mode-locked Yb: Lu2O3 thin-disk laser[J]. Optics Express, 2017, 25(13): 14918-14925. doi: 10.1364/OE.25.014918
[46] Druon F, Ricaud S, Papadopoulos D N, et al. On Yb: CaF2 and Yb: SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance[J]. Optical Materials Express, 2011, 1(3): 489-502. doi: 10.1364/OME.1.000489
[47] Petit V, Doualan J L, Camy P, et al. CW and tunable laser operation of Yb3+ doped CaF2[J]. Applied Physics B, 2004, 78(6): 681-684. doi: 10.1007/s00340-004-1514-6
[48] Hönninger C, Johannsen I, Moser M, et al. Diode-pumped thin-disk Yb: YAG regenerative amplifier[J]. Applied Physics B: Lasers and Optics, 1997, 65(3): 423-426. doi: 10.1007/s003400050291
[49] Höiminger C, Zhang G, Moser M, et al. Diode-pumped thin disc Yb: YAG regenerative amplifier[C]//Advanced Solid State Lasers. 1998: TS3.
[50] Stolzenburg C, Giesen A. Picosecond regenerative Yb: YAG thin disk amplifier at 200 kHz repetition rate and 62 W output power[C]//Advanced Solid-State Photonics. 2007: MA6.
[51] Metzger T, Schwarz A, Teisset C Y, et al. High-repetition-rate picosecond pump laser based on a Yb: YAG disk amplifier for optical parametric amplification[J]. Optics Letters, 2009, 34(14): 2123-2125. doi: 10.1364/OL.34.002123
[52] Dörring J, Killi A, Morgner U, et al. Period doubling and deterministic chaos in continuously pumped regenerative amplifiers[J]. Optics Express, 2004, 12(8): 1759-1768. doi: 10.1364/OPEX.12.001759
[53] Volodin B L, Dolgy S V, Melnik E D, et al. Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings[J]. Optics Letters, 2004, 29(16): 1891-1893. doi: 10.1364/OL.29.001891
[54] Chyla M, Smrz M, Mocek T. High-energy, picosecond regenerative thin-disk amplifier at 1 kHz[C]//Proc of SPIE. 2012: 82351W.
[55] Teisset C, Schultze M, Bessing R, et al. 300 W picosecond thin-disk regenerative amplifier at 10 kHz repetition rate[C]//Advanced Solid State Lasers. 2013.
[56] Chyla M, Miura T, Smrž M, et al. 50-mJ, 1-kHz Yb: YAG thin-disk regenerative amplifier with 969-nm pulsed pumping[C]//Proc of SPIE. 2014:89590S.
[57] Klingebiel S, Schultze M, Teisset C Y, et al. 220mJ, 1 kHz picosecond regenerative thin-disk amplifier[C]//The European Conference on Lasers and Electro-Optics. 2015.
[58] Jung R, Tümmler J, Will I. Regenerative thin-disk amplifier for 300 mJ pulse energy[J]. Optics Express, 2016, 24(2): 883. doi: 10.1364/OE.24.000883
[59] Jung R, Tümmler J, Nubbemeyer T, et al. Thin-disk ring amplifier for high pulse energy[J]. Optics Express, 2016, 24(5): 4375. doi: 10.1364/OE.24.004375
[60] Nubbemeyer T, Kaumanns M, Ueffing M, et al. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 2017, 42(7): 1381-1384. doi: 10.1364/OL.42.001381
[61] Krötz P, Wandt C, Grebing C, et al. Towards 2 kW, 20 kHz ultrafast thin-disk based regenerative amplifiers[C]//Advanced Solid State Lasers. 2019: ATh1A.
[62] Beyertt A, Nickel D, Giesen A. Femtosecond thin-disk Yb: KYW regenerative amplifier[J]. Applied Physics B, 2005, 80(6): 655-660. doi: 10.1007/s00340-005-1796-3
[63] Buenting U, Sayinc H, Wandt D, et al. Regenerative thin disk amplifier with combined gain spectra producing 500 μJ sub 200 fs pulses[J]. Optics Express, 2009, 17(10): 8046-8050. doi: 10.1364/OE.17.008046
[64] Sevillano P, Brisset J G, Trophème B, et al. High energy regenerative amplifier based on Yb: CaF2[C]//Proc of SPIE. 2017: 1008223.
[65] Caracciolo E, Pirzio F, Kemnitzer M, et al. 42 W femtosecond Yb: Lu2O3 regenerative amplifier[J]. Optics Letters, 2016, 41(15): 3395-3398. doi: 10.1364/OL.41.003395